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Abstract -- The fields of physiology, physics, psychoacoustics, neurology, signal 

processing, etc., all contribute to the design of a model which emulates the hearing 

process. Results from these fields are surveyed, and combined to guide the design of a 

realizable model, as described in this paper. The resdting digital signal processing 

structure may be designed into custom VLSI silicon chips, and will be useful in several 

real-time sound processing applications, such as speech recognition systems. The 

model is preliminary, without detem1ination of all the parameters. 

The first version of this report is being written as a term paper for Stanford University 

course EE208, Biological Infonnation Processing, and is not intended for further 

distribution at this time. 

INTRODUCTION 

The intent of this research paper is to collect infonnation describing how all the processing layers of 

hearing work (to the current state of knowledge and some speculation), to extract the relevant 

infonnation processing functions from the various types of descriptions, and to assemble those 

functions into a coherent signal processing model. The model should be especially useful in speech 

processing systems (such as recognition), but also useful for music, noise, and other kinds of sound 

processing. Models of the inlennediate mechanisms (such as neurons and the central nervous 

system) are considered for what they tell us about Lhe information processing being done, but are 

not in themselves important to ti1e model being developed. 

'01is paper is organized around five major parts of the model, plus introductory sections on history, 

the scope of features considered, and guiding principles, and followed by concluding sections on 

implementation and summarizing discussion. 



HISTORICAL OVERVIEW OF HEARING MODELS 

"Even in our era of technological wonders. the perfonnances of our most amazing_ 

machines are still put in the shade by the sense organs of the human body. Consider 

the accomplishments of the ear. It is so sensitive that it can almost hear the random 

rain of air molecules bouncing against the eardrum. Yet in spite of its extraordinary 

sensitivity the ear can withstand the pounding of sound waves strong enough to ·set the 

body vibrating. 1l1e ear is equipped, moreover, with a truly impressive selectivity. In 

a room crowded with people talking, it can suppress most of the noise and concentrate 

on one speaker. From the blended sounds of a symphony orchestra the ear of the 

conductor can single out the instrument that is not perfonning to his satisfaction." 

(Georg von Bekesy, 1957) 

The ability to implement computing machines has come a long way in the past few decades, and we 

can now confidently say that it is possible to build a machine that can do all the computations 

necessary to duplicate the performance of the ear, if only we knew what computations those were. 

We are ready to do the work necessary to merge the VLSI silicon implementation technology with 

the knowledge and speculations of how hearing works, to arrive at an electronic ear -- a forerunner 

of a new age- of truly amazing machines. 

How do we hear things? Obviously with our ears, but what happens inside to convert minute 

pressure waves into recognizable sounds? The early work on sound reflection and conduction by 

Kircher (1650) and Schelhammer (1684) was important, but did not help answer the hard part of 

the question, perception of pitch and timbre. The first reasonable contributions to the answer came 

when surgeons were able to find and understand the importance of the cochlea (from the Greek for 

a snail with a spiral shell). Bekesy reports that the gross structure of the ear was known to 

pioneering anatomists of the sixteenth and seventeenth centuties, but the details did not start to 

come out till late in the eighteenth century. A good early picture showing the coiled tube structure 

of the cochlea was produced in 1837 by Lincke. His drawings of the cochlear partition, however, 

contain little important detail. The structure of the organ of Corti (the active part of the cochlear 

partition) was first crudely drawn by Corti, in 1851, with the aid of improved microscopes and 

tissue fixation techniques. Further refinements were contributed by Politzer (1873), Retzius (1881), 

Ranvier (1875), Renaut (1899), Kolmer (1911), and Krause (1927). See von Bekesy (1960) for 

details- and references. Sec Figures la. and 1b for good modem pictures of the hearing mechanism 

in man. For more history (including Lucretius, Tartini, Ohm, Seeback, Helmholtz) and a general 

review of hearing models see Schroeder (1975). 

During this time theories on hearing began to focus on the action of the hair cells, which were 

viewed at sensor cells with cilia that reacted to signals at various places along the cochlea. 'l11e 

question then was: what arc the signals that these sensors receive, and how. do they respond? lbe 
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simple and nearly correct early view. was that different sounds stimulated different places on the 

organ of Corti, and that the distinguishing feature of these different sounds was their frequency. 

The perceptual concept of pitch was thought to relate directly to the physical place. This worked 

quite well for signals that were pure sine waves, but not well for speech and other complicated 

sounds. An alternative theory that developed was that pitch was perceived from the volleys of nerve 

impulses that resulted from stimulation with a bursty stimulus like voiced speech or a complex 

musical tone. Both of these theories were useful in understanding hearing at a beginning level, but 

the hard part was in combining them into a physicaly· sound theory that would work correctly for 

an sorts of sounds. This required a better understanding of the mechanical behaviour of the 

cochlea. 

The idea that the cochlea converts frequencies to places of maximum vibration on the cochlear 

partition had to be translated into a model of waves in the fluid filled spiral cavity. The main 

question there concerned U1e propagation properties of this type of "waveguide". Particularly, 

whether waves should be considered standing waves or trave11ing waves (travelling waves won, and 

are wen described in von Bekesy, 1960). It took many years of continued experiments, and 

mathematical exploration, to home in on a fairly accurate characterization of the spatiotemporal 

response to general stimuli. But as we will see, there is still considerable controversy on several 

points. 

The basic model is a fluid medium which is long, not very wide or tall, and has a stretchable 

membrane dividing it into two sections, with stiffness changing from very stiff near the input end 

(where the fluid in one side is driven through the oval wondow) to very stretchable near the 

terminal end (where finally there is an opening, the helocotrema, through to the other side of the 

fluid-filled cavity). The characteristic frequency (or CF, the frequency that causes tl1e most 

displacement of a point on the membrane) changes geometrically by a factor of abtut 1000 (about 

10 octaves). rThis model is represented by an electrical analog, using inductance for mass, 

capacitance for stretchable membranes, voltage for force, current for velocity, etc. The result is a 

tapered transmission line, with a discrete approximation as shown in Figure 2. The response can be 

studied by using this discrete-section lumped RLC approximation, or the transmission line can be 

solved for wave propagation characterisics directly by assuming no reflections; this is true if 

stretchiness changes slowly enough with distance, as in "the cochlear compromise" of Zweig (1975). 

l11e approximate correctness of this one-dimensional model requires the assumption that the 

wavelengths of waves moving through the cochlea are long compared to the height of the fluid 

channel, which is not a correct assumption if examined closely near the place of resonance for the 

wave. 

To answer this objection, two-dimensional fluid models were examined by computer ·simulation 

techniques. rll1is excellent work showed that good models can fit experimental data very well, while 

simpler models just come fairly close (Allen 1977). Figure 3 shows an idealized three-dimensional 

model of the cochlea, in which the width dimension is ignored to arrive at the two-dimensional 
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model. 

A useful simple characterization of any of these models is the tuning curve, a graph of frequency 

response for a particular place on the basilar membrane (refered to as BM, the main part of the 

cochlear partition, holding the organ of Corti). There has not been much agreement on what the 

real tuning curves are, since different experiments give different results. The differences are mainly 

between the two classes mechanical tuning response and neural tuning response; the neural 

response, or internal representation of.sounds, always seems to be much sharper than the measured 

or calculated mechanical resonances. TI1e themies to explain the difference are based on two ideas: 

a second filter that sharpens the response by neural interactions (e.g. lateral inhibition), and 

sharpening due to the micromechanics. of the organ of Corti (Hall, Allen, etc). TI1is controversy is 

being actively pursued in recent literature. Another view has a1isen recently, based on nonlinear 

modelling and experimental data; it is that the small-signal mechanical and neural responses are 

rea11y the same, but that the experimental techniques used to measure mechanical response drive the 

cochlea into the nonlinear region, where selectivity is reduced (Kim 1975). If this is so, and if we 

can get by with modelling just the small-signal response, then the second filter vs. cochlear 

micromechanics question goes away. 

If the acousto-mechanical model works, it describes the vibrations sensed by the hair cells; how do 

t11ey respond to those vibrations, and what happens to their output signals? A main problem here is 

that the energy that is to be detected varies over 12 orders of magnitude (120 dB) from threshold of 

hearing to pain. 'The detector (or transducer) mechanism must compress this into something less 

than 2 orders of magnitude for representation as neural firing rates (about 10 to 1:000 pulses per 

second). To accomodate this requirement, sensory organs are genera11y thought to have an overall 

"pseudo-log" response, which works very nicely for compressing the dynamic range of inputs. Even 

our telephone systems employ compression networks that are nearly logalithmic over about a 40 dB 

range of inputs. 

The problem of describing in detail how the mechanical signals are converted to neural signals is 

known as the encoding problem. New analytical techniques have been used (Rose 1971, de Boer 

1977) to show that t11·~ short-time response is very nearly like an ideal half-wave rectifier (linear 

relation of output signal amplitude to input signal amplitude), and iliat t11e longer-term compression 

characteristic is due to a fast adaptation process that changes the linear gain; the gain is modelled 

by a depletion mechanism (Schroeder 1975). The question of exactly which mechanical signal is 

being encoded is also very important: the tuning curves for position, velocity, pressure, and their 

spatial derivatives, arc quite different in sharpness. Von Bekesy ( 1960) proposes that shear forces 

due to membrane bending are being detected, based on impedance matching considerations; Hall 

(1976) proposes t11at the first or second spatial derivative of displacement might be used; and Allen 

(1977) proposes a micromechanical mechanism for detecting a linear combination of pressure and 

displacement, giving timing curves that match de Boer's data quite well. 
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When sounds have been converted to neural pulses by the fantastic mechanisms discussed above, 

the work has really just begun. As signals travel along nerves out of the cochlea and toward the 

brain, more processing is being done at various places along the way. The sites of processing are 

known as ganglia and nuclei, which are clusters of nerve cells outside of the central nervous system 

{think of them as micro-brains). The first, or most peripheral, such site is the spiral ganglion, which 

is on the end of the auditory nerve inside the cochlear spiraL Here the structure is analogous to the 

ganglia in the retina of the eye, where each ganglion cell gets inputs from several nearby sensor 

ce11s, and implements some kind of processing (second filter, or lateral inhibition?). The structure 

of such a network is shown in Figure 4, from observations of the retina; the ear may not have the 

same processing structure, but the general diagram should be similar, as in Figure 5 (Molnar 1968). 

In von Bekesy's collection of papers on sensory inhibition (von Bekesy 1967), he models such 

networks as simple linear filters in the space domain, whether for hearing, sight, feeling, or other 

senses. 

More processing is done later, in places such as the A VCN and PVCN (antero- and postero-ventral 

cochlear nucleus). See Figure 6 for an overall picture of the neural processing in the auditory 

pathway. Only recently has progress been made in deciphering what goes on in the various nuclei 

and higher brain centers. The details are not yet available for this paper, but an important 

generalization is that many processing functions can be modelled as correlation computations. Early 

experiments on the visual-motor response of a beetle proved the effectiveness of autocorrelation as a 

model of low-level visual processing (Reichardt 1961, via Wooldddge 1963). We will use a similar 

model for processing the detector outputs to arrive at a representation of pitch and timbre. 

Evolution has several clues to the relative importance of peripheral and central processing. Even 

low animals without evidence of "higher functions" can learn to recognize and respond to sensory 

patterns. The parrot evidently has all the intelligence it needs to remember and even repeat 

complicated sounds (much more versatile than just human-sounding speech). This is tl1e reason we 

are confident that we can stop our modelling before getting into the complications of the cerebral 

cortex, the center of intelligence. But that still leaves us needing to model elementary memory and 

recognition processes. It is clear that the mechanism must be sonic kind of associative store, which 

responds to patterns by indicating whether the pattern has been stored before, and if so returning 

more information stored with the pattern (such as its name or meaning). A recent article (Menzel 

1978) explores the organization of learning and memory in the tiny brain of a bee, which has less 

than a million neurons. See Sagan (1 ~77) for a good discussion (including some very insightful 

speculation) on the structure of the. brain and its relation to evolution. 
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FEATUUES AND EFFECTS TO BE CONSIDERE:D 

We cannot attempt to model all the intricacies of the hearing process, since we don't know what 

they all are: we should not attempt to make our model duplicate all experimentally observed 

phenomena, since some are subject to controversy, and many may be unimportant or detrimental to 

something like speech recognition. In this section we discuss some features of the hearing 

mechanism, and effects of processing, that we feel are worth considering for inclusion in the model. 

Clearly, we can build a model which responds reasonably to sine-wave stimuli; the next step in 

trying to model response to more complicated stimuli is to study and model two-tone interactions. 

There have been many experiments and theories over the years to study the perception of pairs of 

tones with various amplitudes and frequencies. The results are diverse and fascinating; one might 

hear both tones separately, only one of the tones, a rough tone mixture, or the original tones plus 

one or more combination tones, depending on the various parameters. If we use a model which in 

a simple way accounts for most or all of these phenomena, then we can be confident that the model 

will respond reasonably to more complicated combinations of sounds. Some of the more subtle 

masking effects depend not only on the relative amplitudes of the tones, but also on their amplitude 

relative to the threshold of nonlinearities in the cochlea (one tone needs to be about 80 dB SPL to 

show clear nonlinear effects); we wi11 avoid modelling these effects under the hope that the small 

signal response is more important to normal perception. For a good discussion of perception of 

complex musical sounds, including the concepts of harmony, consonance, and dissonance, see 

Roederer (1973) and Geldard (1972). For more on nonlinear two-tone interactions see Hall (1976), 

Kim (1975), and Schroeder (1975). 

Nonlinearities may be needed in other places in the model, such as in detectors and limiters, 

compression curves, etc., but hopefully in simpler forms. The demodulation of complex waveforms 

into representations of timbre cannot be done by linear processes. 

The question of phase sensitivity has bothered acousticians since they started trying to vetify, 

quantify, or modify Ohm's Acoustic Law (that the ear is sensitive only to the amplitude spectrum). 

Schroeder (1975) has a good discussion of the issues and problems, but fails to note that by simply 

combining his models of cochlear mechanics and neural transducti(m, slightly phase-sensitive effects 

will be observed just as in psychoacoustic experiments. Thus, we expect to be able to model fairly 

accurately the slight phase sensitivity of the ear as a by-product of the other parts of the model. 

Binaural effects are very important to normal mammalian hearing, since sound source localization 

has obviously important survival value. We do not intend to incorporate binaural effects into the 

model at this time, but we should examine models of binaural processing to gel ideas about the 

kinds of processing n1echanisms likely to be found in th_c nervous system. The important idea that 

emerges is cross-correlation processing (Roederer 197 3 and Licklider 1959, or coincidence detection, 

which is similar, in Colbum 1977). · 
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An intriguing mystery in hearing is the function of the outer hair cells. 111ey receive efferent 

signals from the brain, and may influence the electrical, chemical or micromechanical properties of 

the organ of Corti. Is an understaning of this mechanism necessary to a successful emulation of the 

hearing process? We better hope not, but we can speculate that this efferent path is important to 

the focus of attention on one of several competing sound sources. TI1at is, the ear may really be an 

adaptive filter, inside a giant feedback loop that directs the selection of a certain signal out of a 

field of interference. It would be nice to include this in our model, but we don't know enough yet, 

so we won't. Besides, in the lower animals there is no system of outer hair cells, and they are still 

able to remember and recognize patterns of sound. 

It is important to implement other kinds of adaptive behaviour that we can understand. The overall 

model should be like a living organism in the sense of having enough feedback loops to be 

completely self-stabilizing. 

GUIDING PRINCIPLES FOR THE MODEL 

Converting our ideas about what the right processing steps are into a realizable model will require 

that we first resolve some fundamental questions about representation and methodology. In this 

section we develop such guiding principles, for application in the following sections on the model. 

The representation problem is central to the modelling problem. The model will be built of digital 

logic elements, which will carry encoded representations of the signals of interest in the ear and 

brain. In the ear, signals are represented as small variations of pressure and velocity over time and 

space. In the brain, signals are represented by complicated patterns of discrete electrical pulses in 

time and space. Rather than modelling these representations directly, we should think about the 

underlying signal being conveyed, and select a representation to. fit. Given the digital, technology, 

the natural representation for signals of all sorts is numetical; finite discrete numbers, at finite 

discrete places and times, can be used to represent arbitrarily complicated signals over time and 

multiple space dimensions, if certain sampling criteria arc met. 

Neural pulses represent signals in several ways, not just to confuse us, but because they are cleverly 

designed to make the most of the nctiral technology. Infonnation is conveyed in the baseband 

component of the neural pulses (average rate of pulses represents signal intensity, roughly), but 

more infonnation is conveyed in the detailed timing of the pulses (with a resolution of a few 

microseconds in some cases, such as binaural localization). Docs that mean we need to do similar 

tricks to capture all the infonnation? No, if we sample fast enough in the first place, the various 

processing functions that need the in fom1ation will be able to ex tract what they need and convert it 

to other fonns. TI1is means that the sample rate needed to encode neural information is 

considerably higher than the maximu1!1 pulse rate of a neuron. While this high-rate unifonnly­

samplcd-data rcpresen!ation is not very efficient, it is easy to work with. Accordingly, we will adopt 

the sampled wavcfonn approach to signal encoding. Another implication of this is that all signals 



are analog in nature, and thus each sample must be represented by a numerical encoding with 

sufficient precision (a multiplicity of bits}; that is, a hard (or single-bit) decision should not be used 

at any place within the processing to represent a signal. 

The goal of the processing done by the ear and brain, and by our model, is to extract the interesting 

featural information from sound waves, for storage and later recognition. A clearly important 

principle is that we should attempt to extract as much as possible of the useful information, using 

the ear as our guide to what is useful, and to represent it in as few bits as possible without 

compromising quality. The signal output of the neural processing stage, which is the input to the 

memory, will consist of a low rate sampled feature vector (still consistent with discrete 

representation of intrinsically analog signals}. 

How fast do we perceive changes in sounds? Where is the boundary between hearing quickly 

changing sounds and hearing coarsely textured sounds (for example between beats and roughness in 

two-tone experiments)? The answer to these questions is vital to the model, since we must attempt 

to extract the roughness as a characterization of a steady sound, while representing the beats as 

slowly changing values of the feature vectors. For voiced speech, we clearly want pitch to be 

represented as a roughness, not as discrete bumps in the feature vectors. Thus the fastest signal to 

be represented in the feature vector will be somewhere below 60 Hz. All faster effects will have to 

be demodulated into baseband signals. We know that in vision we can accept a time sampling rate 

of 24 or 30 samples per second with little loss. We propose to use exactly a 60 Hz sample rate for 

this model of hearing (feature vectors limited to components below 30 Hz}, in order to make it easy 

to view intermediate results on a television screen. 

We should try to arrive at an ouput of feature vectors that is not only easy to handle, but also has a 

nicely structured space. Consider each element of the vector to be the coordinate along one 

dimension in a feature space. We want a space with good discriminability, or with dimensions not 

highly correlated. Literature on pattern classification provides some good guidelines, but not any 

effective algorithms for· optimizing the choice of feature space. If the structure of the feature space 

is not too bad, the comparison problem in the associative memory is greatly simplified. 

We must be careful to avoid using processing techniques that arc badly behaved. We require 

robust algorithms, which will tolerate abuse and confusion of all kinds without giving spurious 

results. Thus many techniques u·scd in speech recognition and other speech processing fields are 

immediately discarded--they fall apart under the influence of background noises like air conditioners 

and typewriters because they rely too inuch on the assumed structure of speech, which is supposed 

to be the only input. An important special case of a confusing input is perfect silence. We must be 

careful not to have something like a logarithrn or reciprocal which will try to output an infinite 

value. 

Most of us arc familiar with the unpleasant reaction. to a sudden loud sound (or any sudden sensory 

input which is much larger than the previous background stimulus). This is evidence that our 
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adaptation mechanisms can not cope perfectly with quick increases of signals over many orders of 

magnitude; but it happens rarely enough that we must admit that adaptation works amazingly well, 

and when we are caught by surprise the shock value may be important to our survival. Our sensory 

adaptation mechanisms seem to be optimally adjusted to help us notice similarities and steady state 

values, while simultaneously emphasizing differences and rates of change. We must strive to 

duplicate this performance in the model. This will require adaptation in all phases. However, to 

make the design and analysis problem tractable, we should cleanly separate the main processing 

functions from the adaptation functions. Thus, adaptation mechanisms are treated as a separate part 

of the model, even they are logically interspersed with the other parts. 

Neural processing is full of nonlinearities. We could spend forever optimizing the nonlinearities for 

detector and adaptation curves, but we won't. We restrict ourselves to easily realizable 

nonlinearities of two classes. The first is a simple instaneous monadic operator (a memoryless 

function of one variable). The other is a bilinear gain-controlled amplifier (a multiplier); it is linear 

in either input with LlJ.e other held constant. The instantaneous functions to be considered will be 

restricted to those implementable with simple arithmetic operations (not series), and possibly log 

and antilog. We will use simple approximations to whatever operations we want; if simple 

approximations won't work, the algorithm is too sensitive to be acceptable. 

In the following sections, we propose digital signal processing structures ·to implement the various 

stages of processing that we have discussed. 

MODEL PART 1--ACOUSTO-MECHANICAL FILTERING 

If we start at the beginning, and follow sound information through all the processing operations that 

it encounters, we should study the properties of sound waves in air, in confined spaces as in the 

middle ear, in m~chanicallinkages, etc. But the important aspect of all this processing is that waves 

in air ar~y transformed into waves in the cochlea; it is just a conversion of representations, 

with the usual impedance matching problem. This class of problems we will relegate to designers of 

microphones and preamplifiers. We will also let them have the problem of the overall frequency 

response between the air and the cochlear fluid, by incorporating a simple tone control in the 

preamplifier. The conversion of analog signals to digital discrete-time representation is the entrance 

to our model; for this we propose a wide dynamic range analog-to-digital converter (such as the 16-

bit unit developed at CMU for speech research). running at a sample rate that depends on the 

desired fidelity and on cost (probably about 20 kHz). 'I11Us the cochlea model will simply be an 

arithmetic pro'cessor that operates on a single fixed-rate stream of numbers (in real time. of course). 

The cochlea takes a single input signal. and responds with different signals at a continuum of places 

along its length. We will simplify this to provide onl~' a finite number of discrete outputs. each 

corresponding to a point on the cochlea. Between the input and any output there is a transfer 

function (or a more complicated inpulloutput relation if nonlinearities arc involved). and thus we 



can look at this structure as a filterbank, a collection of different filters with a common input. 

Actually, each of these filters is quite complicated, and they are highly interrelated; it makes sense, 

then, to actually make this filterbank from some shared structure that models the wave propagation 

in the cochlea. We are faced with the decision of what model, at what level of complexity, to adopt 

arid implement. We wiJJ start with the two-dimensional fluid model, draw the equivalent RLC 

circuit for the long-wave approximation, and assume linearity (small signal model) for simplicity. It 

would be interesting to actually impleJ,Tient a more complicated version at a later time, to see if it is 

any more useful than the simplified model. 

The RLC transmission line model has a discrete number of outputs (say five per octave over six 

octaves in a low-budget version), but it uses continuous-time signals and components. To convert 

this to a digital structure, we need to study the literature on wave-digital filters, stmctures which can 

directly model waves, impedances, etc. These structures map voltage/current combinations that 

represent incident and reflected waves into two-way digital wave ports. But are reflected waves 

needed in a cochlear model? Zweig (1975) and others say no; the response of the cochlea can be 

matched almost exactly by assuming no reflected waves at all; the cochlear compromise is inherited 

by the cochlear model. Thus we can use a simpler structure, a simple cascade of filters (this is like 

buffering the stages in the RLC model to prevent any backward signal flow). 

The buffered RLC model and its digital filter equivalent arc shown in Figure 7, along with typical 

transmission pole and zero locations. To determine the coefficients for the digital filters, we need to 

calculate the transmission poles and zeroes of the analog structure in the s-plane, map them by a 

simple transformation into the z-plane, and convert these to coefficients by standard methods. For 

reasonable pole and zero position accuracy, we should use coefficients of about 16 bits, and data 

words of about 22 bits. These word length requirements can be reduced some if we use another 

second-order form such as coupled first-order sections (Gold 1969), instead of the canonic form. 

The detector output of this filter section (analogous to the displacement or velocity of the BM at a 

point) is not the same as the signal that is fed forward to t11e next stage (analogous to pressure in 

the cochlear fluid); rather, the detector output is the signal that comes from applying the poles due 

to the series resonance, which are close to the z.eroes of the transmission gain. cf11e result is that the 

filter response to the detector is highly tuned, and that the response to the next section is low-pass, 

with each section lowering the cutoff. Thus waves propagate through filler sections to the point of 

maximum resonance, then are quickly attenuated, just as in the cochlca (von Bekcsy 1960). 

cl11c approximate tuning curves for this model can be found in Zweig ( 1975), since he did a similar 

transformation of the modcl by assuming no reflected waves in his solution approximation 

technique. See Figure 8 for Zweig's tuning curves, compared to measured data. Of course, the 

parameters can be vaii.ed to make the .tuning more or less sharp. If we only usc five sections per 

octave, the luning sl:arpness should be reduced to avoid spurious results due to our limited 

frequency resolution. The resonant frequencies of the sections will be chosen to closely 
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approximate the relative frequency selectivity of the ear; the result is a geometric progression from 

about 500 Hz to 4000 Hz, and somewhat sparser above and below that. 

The shape of the skirts on the tuning curve will depend on the density of sections per octave, 

among other things. If not enough sections are used, the first thing to suffer will be the steepness 

of these skirts; this is especially true of the high side skirt, which counts on the cumulative 

attenuation of all the previous sections. 

The acousto-mechanical part of the model is now complete, and as can be seen, there are only two 

components required to implement it: memory and multiplier/adders. Both of these type~ of 

components can be built as regular arrays, suitable for silicon VLSI embodiment. In fact, such 

components already exist in MSI and LSI; digital filters are routinely built with boards full of them. 

In summary, the acousto-mechanical filter part of the model consists of a simple cascade of about 

30 or so second-order pole-zero filter sections, with output taps from within each section. 
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MODEL PART 2--TRANSDUCEHS OR DETECTORS 

In part 1 of the model we mentioned that each section of the transmission line model has a separate 

.ouptut to go to the detectors. Docs the detector look at just one such output, or docs it look at lhe 

difference or second difference of two or three adjacent outputs (the spatial deliv.ative approach), or 

does it look at a linear combination of an output and a delayed or phase shifted version of the same 

(similar to the Allen approach)? We might postpone the decision and preserve the generality of all 

these approaches by letting each detec~or see a linear combination of three adjacent outputs and one 

or more delayed replicas of each. Then we would have to decide what linear combination of six or 

so inputs we really want. That's too much generality to handle, so first observe that the output of a 

section is to first approximation a delayed version of the previous output, but filtered somewhat due 

to the difference in resonant freqticncies. So the question of whether to look at signals adjacent in 

time vs. in space is probably not important. Since adjacent signals in space are already available, 

use them; for simplicity just use two (call them Xi and Xi+ 1), but for a little remaining generality 

leave the linear combination unspecified, as in 

Yi = xi + k·Xi+l. 
Different values of k will give different amounts of sharpening or broadening in the response of the 

signal Yi. 

Next we need the actual detector nonlinearity. A good power detector is a square-law nonlinearity, 

as used in photocells, resistor-thermistor power meters, etc. One might speculate that the square-

law heatup of the lossy elements in the RLC model could be detected; but the amounts of power 7 

involved in the car are so low that the temperature increase would not be perceivable. Power or 

full-wave envelope detection is not really the right thing to do. As mentioned before, the 

nonlinearity is known to be nearly an ideal half-wave rectifier, based on analyses of signals on single 

nerve fibers. Anyone who has played with a model of the cochlea should appreciate the reason for 

the half-wave nature. If we look at a smoothed version of a detector output, when the stimulus is a 

pulse train or voiced speech, we see mostly the envelope detected as "lumps" at' the pitch or pulse 

frequency (see the wideband sonogram in Figure 9, for example); if we look at the output when the 

stimulus is a pure tone with the same pitch, we will sec similar "lumps" (but coming mostly from 

the low frequency pla~cs on the cochlear model). If, on the other hand, we had a square-law or 

absolute value (full-wave) detector; the apparent pitch of the pure tone would have doubled, making 

it sound· (or look) very unlike the pulse train with the same pitch. Since the ear uses half-wave 

detection, we can see that pitch is simply translated into periodic patterns after the detectors, 

relatively independent of place (for low enough pitch). An interesting effect is to have complex 

tones which arc in separate frequency (place) regions, so they don't interfere much, but with 

different periodicity pitches. The model will clearly show different places responding at different 

pitches, which arc completely unrelated to those places. We have observed this effect in speech (see 

Figure 10 for an example with two apparent pitches), which may explain why· unique pitch 

determination is such a hard problem. 
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A reasonable alternative for the detection nonlinearity is a "soft" half-wave rectifier, since in nature 

it is unusual to find a sharp break as in the ideal half-wave rectifier. Schroeder uses the relation: 

z = Y + <Y2+ns. 

which approaches 2-y+ (twice the positive part of Y) for large absolute values of Y. NearY = 0, 

however, this function makes a smooth transition from no response to positive response, without a 

sharp corner. See Figure 11 for the characteristics of this nonlinearity. 1l1e offset value of Z = 1 

at Y = 0 corresponds to the spontaneous firing rate of the detector neuron: when the hair cell is 

stimulated, the firing rate increases during positive half cycles, and decreases to near zero during 

negative half cycles. 1l1e result is that signals with amplitude less than about unity contribute much 

less average firing rate than they would with a sharp rectifer characteristic. This is qualitatively 

consistent with the knee in the subjective loudness curve (sones vs. phons) at about 20 _dB SPL (van 

Bergeijk 1960). 'There are problems in scaling unity in this nonlinearity to the signal amplitude in 

the model, and in deciding whether such scaling should be affected by adaptation: these problems 

don't exist with the sharp nonlinearity. Therefore, without excluding further improvements, we will 

stay with the ideal half-wave rectifier for now. 

The output of the detectors is a good place to do the first step of sample rate reduction. 1l1is is 

ideally a null information processing operation (a no-op), but actually requires some loss of 

infonnation due to bandwidth reduction. We will apply a simple smoothing (lowpass) filter to the 

detector outputs, and resample at about 2000 Hz (an order of magnitude reduction is possible here 

because most of the infonnation in the fast sampled waveform has been demodulated to baseband 

or envelope information by the detectors). This new sample rate is high enough to encode most of 

the information that can be conveyed by a pulse train limited to about 1000 pulses per second, so it 

should adequately handle the representation of neural signals. 

We must be very careful about sample rates and bandwidths. Even if we have sampled at 20 kHz 

to capture sound waves up to 10 kHz, we can get into trouble with aliasing at the detector. An 

instantaneous nonlinearity will change a band-limited signal into a much wider-band signal in the 

continuous-time domain, but will cause strange results due to aliasing in the discrete-time domain. 

Particularly, observe that any detector will have a strong second-order component, which will 

produce both DC (representing envelope) and a double frequency tenn from the sinusoidal or 

bandpass input wavefonn. Therefore, a signal frequency of 5000+ f Hz will produce a spwious 

output at 10000-2f Hz. For example, a 9000 Hz ckmnel will have to cope with sptirious signals 

around 2000 Hz coming out of the detector, which is especially a problem if such signals are not 

filtered out before resampling at a lower rate: resampling at 2000 Hz aliases signals in this area right 

into the baseband, for mJ..x imum confusion. 

A good smoothing filter is a cascade of a few first-order (RC type) lowpass sections. plus a structure 

that puts transmission zeroes at all places that would alias to DC. A simple sum of N adjacent 

samples gives the required N -1 zeroes. where N is the sample rate reduction factor (N = 10 in our 

example). 111C first-order fillers are similarly simple, but require multipliers: The cutoff at 1000 Hz 
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should not be sharp, but should be a gradual rolloff from about 100 Hz, so that as pitch increases, 

the volley representation decreases gradually toward zero. Higher pitches than 1000 Hz will be 

represented only as places of maximum envelope response. 'l11e human ear may actually have some 

volley timing infmmation at considerably higher pitches, with some neurons sensitive to timing 

differences on the order of a few microseconds, but the effects are subtle, and not relevant to 

speech. If we want to accomodate these effects, we might need faster sampling and broader lowpass 

filters. Nature's neural pulse train representation is used very efficiently in this respect, to carry not 

only envelope information (in the firing rate), but also phase and frequency information (in the 

detailed timing of individual pulse positions). 

Adaptation is covered later, but we should say a few words here about the depletion model of 

transducer adaptation (Schroeder 1975). Hair cells cause primary auditory neurons to fire by 

manufacturing and delivering to them a chemical transmitter; the rate of stimulation is limited by a 

relative shortage of this commodity. In addition, there is a finite storage area for this commodity, 

and a decay rate. Figure 12 is an electrical analog of this mechanism, where the conductance g(t) is 

the rectified signal from the transducer (like the membrane conductance caused by bending the 

cilia), the battery and resistor are the production and decay mechanism, and the capacitor is the 

storage (this model is like Schroeder's except that he used a Norton equivalent, with a current 

source instead of a battery, which was better for the production-depletion explanation but did not 

generalize the way we wanted it to for the discussion below). The output is the current through the 

conductance g(t); this is just the detected signal multiplied by a gain proportional to the voltage on 

the storage capacitor. 1be product RC is a recovery time constant: the time to fill to within lie of 

the distance to the steady-state capacity, where production matches decay. 'Ibe attack time constant, 

the time required to deplete the storage enough that a very large stimulation will deliver only a 

reasonable level of transmitter, is short but variable. Essentially, with a very large stimulation, the 

whole store will be transmitted at once, causing a barrage of nerve firings which quickly decays to 

. the saturation level, that which is just supported by the production of transmitter. The response of 

the adaptive transducer (with Schroeder's soft nonlinearity) to tone bursts of valious levels is shown 

in Figure 13. 

This mechanism has to be examined in several ways. It has short-tenn (waveform distortion), 

medium-tenn (adaptation to attack), and long-term (recovery) properties. It has small signal (linear) 

and large signal (limiting) behaviour, and a crossover region. nut more importantly, it has spatial 

characteristics, relative to the other detector channels. If each saturates independently, there will be 

a tremendous flattening of response with increasing signal level. Some kind of inhibitory action is 

needed to red\1ce this effect, or to reverse it to give sharpening instead of flattening. One way to do 

this is to couple the production-depletion mechanisms so that adjacent channels compete for the 

transmitter commodity. Such competition is modelled by replacing the batteries in the model with 

coupled RC storage mechanisms much like the original (with higher capacities, lower average 

saturation levels, and slower recovery times). This distributed RC structure might represent the 

input of some primary energy commodity (such as ATP) by diffusion from the nearby fluids or 
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blood vessels. It might be preceded by yet another similar stage, even more tightly coupled or 

completely shared, to represent the electrical potential in the scala media, which also affects the gain 

of the transducers. For more description of the relevant structures, see the section on adaptation. 

The effect of this adaptation mechanism removes the need for a "pseudo-log" nonlinearity, since the 

response is linear for very low signals and stabilizes with very high signals. Still, it is important to 

define where the crossover region from small to large signal is for each layer of the adaptation 

mechanism. This will probably have t.o be set by some simulation and experimentation, but should 

not be critical. 

In summary, the model for each channel of the transducer array is a cascade of four simple steps, as 

follows: 

1. A linear combination of two adjacent filterbank outputs. 

2. An ideal half-wave rectifer. 

3. A controlled-gain amplifier, controlled by the output of the adaptation model. 

4. A smoothing filter and sample rate reduction. 

The outputs should only need a dynamic range of about 2 to 3 orders of magnitude (40 to 60 dB}, 

which can be accomodated in seven to ten bits. Since very large transients may occur at the onset 

of a sound, some overflow protection limiting should be included. Notice that all signal values after 

the rectifiers are strictly positive, potentially simplifying the arithmetic units required. 

MODEL PART 3--PERIPHERAL NEURAL PROCESSING 

Think of this part of the model as an array processor. It receives a set of several dozen inputs, 

several thousand times per second, and has to extract and output a smaller set of numbers, at a 

lower rate. It decomposes into two main sections, the first operating on the inputs as separate 

streams, expanding them into even more streams but reducing the rates, and the second linearly 

combining these streams into a smaller number of streams, with a better structured space. The 

actual neural processing in mammalian hearing mechanisms is probably not so cleanly divided, but 

we ne~d to restrict ourselves to something we know how to do. 

The problem is similar to the original waveform analysis problem; the fine structure and 

periodicities in time of the input waveforms have to be converted to p:~tterns in space, and 

represented at a much lower rate (say 60 Hz, more than an order of magnitude reduction). Should 

we apply another filterbank analysis and extract the spectra of these signals? There is no known 

mechanism that would support such an analysis in a neural network; but we can arrive at another 

form of spectral infonnation by computing an autocorrelation estimate of the signal. 'n1is is 

something neurons can do. 
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How can neurons compute autocorrelations? Figure 14 shows a signal processing structure that 

computes smoothed products of a signal times various delayed versions of itself; these are 

autocorrelation estimates parameterized by the delay T. Neurons can easily implement the required 

delays by path length differences. The multipliers are also naturals for neurons, if they don't have 

to be particularly accurate. Suppose that a neuron fires only if it is stimulated nearly 

simultaneously from two different inputs; then it fonns a coincidence detector, or AND-gate, which 

is a fair approximation to a multiplier (or exactly a one-bit digital multiplier). The real response 

will be smoother than that, so a multiplier-like function is not unlikely. Even a crude 

approximation is adequate to give roughly the same results as a good autocorrelation analysis if the 

signals are dithered by noise. 

Consider the response of this structure to the periodic pulses that come from the detectors when the 

stimulus is a low-pitch tone or pulse train. As the detected pulses travel down the delay line, they 

come to places where they line up with new pulses, resulting in a maximum product. 11ms the 

autocorrelation function has a peak that identifies the pitch period with the delay T. In general, the 

shape of the autocorrelation function is related to the timbre of the sound. 

We need to decide what values ofT to implement; both the resolution and the maximum range are 

important. Suppose the total delay (maximum T) is 16 msec, or 32 samples at 2 kHz; this 

corresponds to a full cycle of a 60 Hz pitch, or a half cycle of a 30 Hz pitch, so the pitch resolving 

ability will roll off between 30 and 60 Hz, which is about what we want. If we implement taps 

after every .5 msec delay, we will expand each channel into 32 channels, which is too many, 

especially considering the relative invalue of pitch to speech perception. Instead, use taps that are 

geometrically spaced, with a factor of two separation. A convenient set of values would be .5, 1, 2, . 

. . , 16 msec, for a total of only six taps (and perhaps more at 0 and 32 msec to make eight). rThese 

cover full cycles of pitches from 60 to 1000 Hz. 

Just picking off the desired taps from a full delay line has two big problems. First, it uses too 

much memory (32 taps times 32 frequency channels is 1024 words of several bits each, which might 

fill up a whole chip). Second, and more important, is the fact that the resulting autocorrelation 

estimates do not include much infonnation about the intermediate taps, making the estimates for 

large values ·of delay depend too much on the short-time structure of the signal. !3oth of these 

problems can be alleviated by using a ·lowpass filter cascade instead of a simple delay cascade. The 

filters can be fairly trivial: they simply add two successive values and cut the sample rate by two. 

111Us the delay of each stage doubles ~ls its sample rate decreases, and the bandwidth is halved at 

the sa.me time. Such a structure, with exponcntia1ly decreasing sample rate, can be built with a 

word of memory per stage and a single adder, for any number of stages. The outputs will be 

multiplied by the input at the full 2000 Hz sample rate, and the result will be averages of 

autocorrelation coefficients, over various output taps of the original stmcture. 

111c smoothing lowpass fillers in the autocorrelation estimator will reduce the signal bandwidth to 
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less than 30 Hz, for resampling at 60 samples per second. rThe result is a slowly changing plane of 

values, with axes of frequency and delay time. A display of these values as blackness (or 

brightness) on the two-dimensional surface of a CI~T display in real time would be an impressive 

dynamic representation of sounds. This is quite unlike a sonogram, which parameterizes in terms of 

frequency only, and is plotted against time on a fairly fine scale along the other dimension: it 

changes too fast to present the dynamics in real time. Our representation is much more closely 

analogous to vision, in that it produces patterns in a plane, changing only slowly in time. Thus we 

can look at it easily. 

The array of point streams thus generated may be further filtered to enhance edges or smooth over 

noises, in time and two space dimensions. In light of the transformation operation in the second 

part of the neural processing model (below}, spatial filleting becomes irrelevant (it is incorporated in 

the transformation matrix, implicitly). Time filtering should not be needed if the adaptation 

mechanism has contributed the desired edge enhancement effects. We leave open for now the 

option to put in sc:ne kind of filter at this stage. 

In the second part of the neural processing model, the several hundred values generated as 

discussed above are combined into a smaller number of feature vectors by a memoryless linear 

transformation. The motivation for this operation is to extract a few uncorrelated features from a 

"picture" that has high correlation between adjacent elements. Each such· feature is a weighted sum 

(and difference) of any or all of the elements of the picture. Neurons could implement such a 

function by integrating excitory and inhibitory inputs from many different places in the "auditory 

plane". 

Early speech recognition systems (and more recent ones such as marketed by Threshold Technology 

Inc.) used such a model of neural processing to extract features from a bandpass filterbank model of 

the ear. Unfortunately, they have typically used only a single bit output; the resulting analog-to­

digital feature extractors are called "analog threshold logic." 

How can we determine a good transformation matrix to be used to map from the input space to the 

output space? lf we have a collection of sounds that we want to be able to discriminate among, we 

have a classical problem in pattern classification; there are methods of computing the transformation 

to maximize discriminability in the output space (given enough data and compqting time), along 

with other useful techniques and theorems. Since we do not know what sounds we want to 

discriminate, we need another approach. 

Suppose that for each output component we choose coefficients at random, independently for each 

clement of the input space. Maybe that is how our neural networks get built. The resulting 

outputs will likely have low correlation, but may not capture much of the useful information unless 

there arc many of them. We still need another ~pproach. 
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The approach we recommend is to pick a set of smooth orthogonal functions, and use them. A 

natural set is sines and cosines of the two dimensions. Disregard the delay time dimension for a 

moment, and consider the inputs as just a graph of compressed intensity vs. frequency; then 

transforming with sinusoids is like peffmming an inverse Fourier transform, similar to that used in 

cepstral analysis, but with a distorted frequency scale. Such a mel-based cepstral analysis method of 

feature extraction was recently used in an experimental speech recognition system (Me1melstein 

1978). 

Another justification for the use of sinusoids in the log(f) domain comes from a paper entitled 

"Correlation and Dimensionality of Speech Spectra" (Li 1969), in which techniques of pattern 

classification are applied to sampled vowel spectra to arrive at estimates of the eigenfunctions, or 

principle components. Plots of these eigenfunction estimates are somewhat noisy and irregular, but 

strongly resemble cosines of log(f). 

'l11e inclusion of the autocorrelation delay time axis complicates the picture, but it is still reasonable 

to think that most of the important information will be captured by transforming with a set of 

smooth functions of the two dimensions. See Figure 15 for an example of the receptive field of a 

neuron with this kind of two-dimensional excitory/inhibitory input network (from Swigert 1971). 

How many such "eigenfunctions" should we use? We propose to use sixteen, to give sixteen nearly 

independent featural dimensions. 

In summary, the petipheral neural processing part of the. model consists of these steps: 

1. An autocorrelation processor on every frequency input. 

2. Low-pass smoothing and sample-rate reduction. 

3. An optional filter in time and two space dimensions. 

4. A linear transformation to a length-sixteen feature vector. 
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MODEL PART 4--LEARNING, MEMORY, AND RECOGNITION 

Suppose some sequences of the feature vectors generated above represent important sounds that we 

want to remember, and that we have therefore stored these sequences in a memory. ·n1e bit 

number, coordinate number, and time index all map into the address space of the memory in some 

way, but we will treat each vector as a word of storage, and simply say that a time index is mapped 

into a word address. Addresses are really unimportant, except to tie feature vectors together in an 

ordered sequence, from beginning to end, for each sound unit (template) stored. 

When the "ear", or the analysis part of our hearing model, delivers something interesting to the 

"brain", or memory, it is recognized if a similar sequence of vectors has been previously stored. It 

should not be necessary to identify the beginning and end of a potentially interesting sequence; and 

search through the memory for it; each pattern in memory should match itself against what is 

coming in, continuously, in real time. TI1us the memory is intrinsically associative; that is, stored 

values are not referenced by address, but by content matching. The memory sends back responses 

like "That sounds like Bach," not just "I've heard that before." See Menzel (1978) for more 

discussion of associative memory, in the context of visual pattern recognition in bees. 

There are several problems in implementing. this associative memory concept. First, what do we 

mean by similar? This requires the definiton of a distance measure between vectors, and a way of 

composing distances over sequences of vectors. Second, how arc interesting sequences selected for 

inclusion in the memory, and how is the memory updated? Both of these issues are discussed 

briefly in this section. 

1l1e transformation to a sixteen-dimensional feature space in the neural process model above was 

designed to result in low correlation between dimensions. As a result, the Euclidean distance 

(square-root of sum of squares of differences of components) is a reasonable way to measure the 

similarity of feature vectors. Other distance measures will not be considered. 

To compose distances over sequences. let us use the sum-of-squares of the individual distances 

between corresponding vectors in those sequences. 'll1us, the distance between sequences is the sum 

over corresponding time indices, of th.e sum over sixteen dimensions, of the squared difference of 

components. (An intermediate square root and square cancel each other.) Other ways of 

composing distances will not be considered, either. 

Now we really have .a problem. How do we know what time index of a stored sequence 

corresponds to what time index of the current unknown input? We don't. The comparison 

mechanism associated with each stored palleni continually checks to see if a recent segment of the 

unknown input, up to the current time, matches the stored sequence up to its end. 'J11at would be 

easy if sequences always came at the same rate, wi~h a one-to-or1e correspondence of time indices 

between unknown and stored template. Figure 16 shows how it would ·be done (since things 



happen at such a low rate, much . of the logic would be shared). 

The problem of matching sequences is much more complicated if the sequences are generated by 

processes that can change their rate, such as the human speech production process. 111e 

composition of distances should be redefined to be the lowest distance obtainable by trying all 

possibilities in an allowable class of time-warping index transfmmations. The result is the distance 

to the most similar interpretation of the unknown that could be found, and maybe information 

about how it was warped to get that match. 

Checking all allowable correspondences of time indices leads to a combinatotial explosion of 

computation: but the ptinciple of optimality can be applied to reduce the problem to a dynamic 

programming problem, in which computation grows only as the length of the sequence being 

matched. 1be computations required to implement a dynamic programming solution to this 

problem are vector distance calculation, selection of minimum, and addition, all at the rate of M per 

sample interval, where M is the length of the template. The algotithm and some variations are 

discussed in detail in Sakoe (1978). The data flow and memory requirements are also simple, but 

are not presently included here due to time limitations. 

The question of how to decide what patterns to put in the memory is also difficult. Suppose we 

simplify the problem by consideting a simple isolated word recognition. system for a single user. 

The templates would be just the words in the vocabulary to be recognized, as spoken by the 

intended user. The problem then is to find a good training strategy to enter representative 

templates and to update them as the user's pronounciation changes. This and other high-level 

strategp relaj~Q functions are beyond the scope of this paper. -----
To use the same associative memory in unrestticted vocabulary, multi-user, continuous speech 

recognition, we might try loading it with many vatiations of short phonetic units, such as syllables, 

phonemes, or transcmes. 'D1e decision of what units to use is probably of central importance, but is 

also beyond the scope of this paper. From the resulting distances to phonetic units, one could 

compute likely words and sentences by searching through a finite-state model of the language, as 

has been done in the 113M continuous speech understanding project (Dahl 1978). 

In summary, the learning, memory, and recognition part of the model is an associative store, with a 

method of entcting new templates from the analyzed input, and a method of concurrent pattern 

matching, with the time-warp search complexity limited by the usc a dynamic programming 

algorithm. The details are not presented, but digital signal processing concepts should be applied to 

assure reasonable range and resolution of the numbers involved. The memory requirements for 

each template of length M (which is variable) arc M "big words" for the M stored vectors, and M 

"small words" for the intennediatc results of the dynamic programming (a typical half-second word 

has M = 30). 



MODEL PART 5--ADAPTATION MECHANISMS 

The goal of adaptation is make the featural outputs robust with respect to variations is loudness, - ..----
rate, room acoustics, microphone orientation, etc., but not to completely remove all dependence on 

these conditions. For example, is we decide to "normalize" the data at some point in the model to 
..:.----

remove all dependence on loudness, we will boost the significance of the noise floor and not be 

able to distinguish it from a good signal: this must be avoided. 

Ideally, an intelligent device with a good idea of how the model works would monitor various 

signals and continuously readjust the model parameters to keep it tuned to the conditions or to the 

signal of interest. This is a much too difficult and general approach. Instead, we will look at 

methods of loca11y stabilizing the signals at various places in the model, without much idea of what 

features are of interest. The function of the outer hair cells in the organ of Corti may be of the 

former type, and therefore outside the scope of this model. 

The general philosophy of local adaptation should be applied in all the representation spaces of the 

model, from waveform input to feature vector output. At each stage, the range of adaptation 

should be fairly small compared to the total; the rates of adaptation at the various stages should be 

chosen relative to the characteristics of the local signals. 

The adaptation machanisms that we currently intend to include are the following: 

1. An overall AGC (automatic gain control), possibly before the analog-to-digital converter, 

to reduce the dynamic range of the signal by about 20 dll (factor of ten gain change). The 

adaptation should be gradual (less than two-to-one compression on a log scale) and its rate 

should be slow compared to the characteristic time (or propagation delay) of the cochlear 

model, so that it doesn't distort wavefonns at all, or envelopes very much. 

2. A gain-controlled amplifier at the transducers, controlled by a resource-depletion model, 

which itself has two or three layers (it doesn't matter if it is before or after the transducer 

nonlinearity, as long as that nonlinearity is an ideal half-wave rectifier). This can be 

partitioned as follows: 

2a. An overall gain control will model the effect of the elccllical potential in the scala 

media. This can adapt more quickly than the input AGC, since gain changes after the 

frequency analyzer will not cause distortion products. The model for the potential is a first 

order filter with inputs from a reference constant and from all the detected signals summed 

together. 

2b. A per-channel "battery", a row of coupled first -order filters that model the diffusion of 

an enery source (A TP) into the hair cells, where it is used to produce the chemical 

transmitter. The coupling is ~ resistive type, which accurately models diffusion into the 

storage (capa~itors). 

2c. The "battery" recharges the store of transmitter, which is itself stored in a first-order 
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linear depletion model (another leaky capacitor) per channel, but without coupling--each 

hair cell saves all the transmitter it makes for itself. 

3. Deemphasis of the slowly changing part of the feature vectors by time filteting them 

may be included later. This is considered to be an adaptation, so it was not mentioned 

previously under neural processing, where it could fit. 

See Figure 17 for the method of interconnection of the various adaptation mechanisms. Each 

mechanism has its own way of limiting the peaks of large signals, and of changing their transient 

shape. For example, the transducers limit by emptying their stores of transmitter, very quickly; 

they recharge fairly quickly, too (about 100 msec). But how far they recharge is limited by the 

surrounding activity, within a few diffusion lengths, by depletion of the energy source, which 

recovers more slowly. It is important that signals are passed through the fast limting adaptation as 

soon as possible after the frequency analyzer, to transform between the huge dynamic range of 

mechanical signals to the limited dynamic range of neural signals. Hopefully, we will succeed in 

doing this while treating the main signal path as a well behaved signal, and adding the adaptation 

on the side to control the gains, to make the signals behave. 

There are an incredible vatiety of possible automatic gain control types of adaptation designs, 

distinguished by the type of filter and nonlinearity (if any) used to estimate the signal strength, the 

type of compression nonlinearity used (if any), the form and parameters of the feedback filter, and 

the nonlinearity of the controlled gain element. 1be depletion model is particularly simple, because 

the signal to be detected is unfiltered, it needs no nonlineatity since it is already a strength, the 
_,c== J 

feedback filter is a leaky integrator (first-order), and the controlled gain element is bilinear. Other 

variations on the design will certainly have their own advantages, but their appreciation will have to 

wait for some analysis and expetimentation. 
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IMPLEMENTATION CONSIDERATIONS 

WJJ..ere_is_~he ~the heating model? It is in the detailed implementation design, and the 

selected parameters, which have not yet been done. From the system design presented in this 

paper, it should be possible to design the details of a hardware or software implementation of the 

entire model, and then to experiment with the parameters. All the parts of the model are easy to 

design and build: an important goal is to design them in a consistent design methodology so that 

they will all fit together into a coherent digital system. A consistent method of interfacing the 

pieces at the levels of bits, words, frames, etc. is necessary before the detailed design can go very 

far. We are working on this aspect of the design now. 

Currently, the amount of circuitry we can put on a single large silicon chip is enough to do perhaps 

the entire first part of the modeL But we must design the system in smaller pieces, always keeping 

in mind that they should be inward compatible, so that by the time we have finished the design, and 

tested the pieces, we can take advantage of the newest technology and pull the whole system inward 

onto a single chip. 

Obviously, there is some good sense is building a simplified version of the model during the 

development stages. Just building the first three parts, without adaptation, might be enough to 

discover powerful new applications for real-time sound display. 

DISCUSSION, SUMMARY AND CONCLUSIONS 

We already know most of what we need to know about the ear to build a much better signal­

processing model of it than has ever been built. Proven techniques from the fields of pattern 

classification an<;l word recognition can be app1ied to this new representation to get performance 

which is probably much better than that attainable in the past on recognition tasks. As new 

infonnation on how the nervous system processes neural auditory inf01mation becomes available, 

that infonnation can be used to refine the model. Many parameters of the model will be soft, and 

can be improved as we leam what is right, without any redesign. 

In summary, the model, shown in block diagram form in Figure 18, consists of digital signal 

processing stmctures to perfonn the following functions: 

1. Model the distributed resonance of the cochlea as a tilter cascade. 

2. Model the action of the hair-cells in detecting the vibrations of the cochlea. 

3. Model peripheral neural processing as autocorrelation and feature extraction. 

4. Model storage and associative matching of sounds using dynamic programming. 

5. Model the adaptive mechanisms that affect all stages. 



The value of most hearing models in the past has been in explaining and exploring the workings of 

the ear and brain. The value of the signal-processing model is in emulating these workings, so we 

can make a machine that hears the way we do. Such a machine has the potential to be very useful 

if implemented in real-time hardware. 
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tJins the basilar membrane (color), on which rest the sensitive 
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cells that excite auditory-nerve .fibers. At bottom center cochlea is 
rolled out, with basilar membrane in side view. Front view of the 
basilar membrane (bottom right) shows that it is wider at one 
end than the other. The wide region vibrates in res-ponse to low fre­
quencies, whereas the narrow region responds to high frequencies. 

Figure la. Drawings of the human hearing apparatus, 

from Broadbent, 1962. 
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Fig. 9. Electrical analog circuit for short section of basilar membrane 
("long-wave model"). For low frequencies (w << 1/,jLC), a given 
section acts essentially as delay line. For high frequencies (w >> 
1/-JEC), circuit represents ·(inductive) attenuator •. For w = 1/.JLC, 
transverse qurent (corresponding to basilar membrane velocity) has 
resonance pe;~k. Different frequencies peak at different places along 
membrane. 

Figure 2. An RLC approximation to the cochlear transmission line model, 

from Schroeder; 1975. 
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FIG. 1. Simplified physical model of the cochlea. The co­
chlea is uncoiled and approximated by two fluid-filled rigid­
walled compartments (scalae vestibuli and tympani) separated 
by an elastic sheet (basilar membrane). The stapes, which is 
connected to the eardrum, is vibrated by sound, setting up a 
fl~ctuating pressure difference across the basilar membrane, 
which drives its motion. The response of the basilar mem­
brane at an instant of time to a pure tone is schematically in .. 
dicated. The vertical size of the scalae and the displacement 
of the basilar membrane are greatly exaggerated. T!le arrows 
in the. cochlea show fluid flow. When the wavelength of the 
wave on the basilar membrane is larger than the height of the 
compartments, the region between t.he stapes and the helico­
trema acts like a transmission line, a section of which is 
shown in Fig. 2. 

Figure 3. Idealization of the fluid cavities of the cochlea, 

from Zweig, 1975. 
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STRuCTURE OF RETINA is depicted schematically. Images fnll 
on the receptor cells, of which there are about 130 million in each 
retina. Some annlysis of an image occurs as the receptors trans­
mit messages ·to the retinal ganglion cells via the bipolar cells. A 

OPTIC NERVE 

group of receptors funnels into a particular ganglion cell, as 
indicated by the shading; that group forms the ganglion cell's re­
cepti,·e field. Inasmuch :is the fields of several ganglion cells over­
lap, one receptor may send mes;ages to several gan:;lion cell,;. 

Figure 4. The network of neurons innervating the retina, 

from Hubel, 1963. 
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Fig. 1. Block diagram showing the path of the stimulating signal through 
the afferent auditory system. The transfer function of the external and 
middle ears of the cat has been studied extensively.ll 9 l-1 53l Properties 
of the cochl~ have been experimentally measured.Pl Studies of the 
primary neurons and neurons in the cochlear nucleus are cited through­
out the text. 

Right: Schematic diagram of the connection between the trans­
ducers in the inner ear and the neurons in the cochlear nucleus. T, 
transducer; N, neuron; and nci, noncochlear input. 

Figure 5. Block and schematic diagrams of the hearing process, 

from Molnar, 1968. 
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Lateral lemniscus 
and nucleus 

Fig. 6-14. Neurons of the auditory pathway (highly schematic and simplified). 
From Thompson (572) after Davis. 

Figure 6. A schematic diagram of the auditory pathways, 

from Geldard, 1972. 
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Figure 7. The buffered RLC cochlear model, its digital equivalent, 

and the pole-zero diagram of a section, by the author. 
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FIG. 3. Com_parison of the approximate WKB solution with an 
accurate numerical solution for the pressure for frequencies 
Cft of 2 and 8kHz. Parameter values are N= 5, o= 0. 02, 
w..,. = 2.- (50 k.'tfz), and d=} em. These values were chosen to 
be typical of those used in fitting e)l:perLrnental data. Schroe­
c;Jr's {1973) solution is also shown. (a) Phase as a function of bas­
ilar membrane position. The numerical and WKB solution are 
identical on the scale of the graph. Schroeder's solution for 
t.~e p!:ase is essentially identical. (b) Amplitucl~ {normalized 
to unity at L'w stapes) as a function of_ basilar membrane posi­
tion. The numerical and WKB solution at high frequency 
(S kHz) are virtually indisting-uishable. Schroeder's solution 
at h!gh and iow (2 Hz) frequency is significantly different and 
violates energy conservation. 9 • 
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FIG. 4. Comparison of predictions from the model with l\H1ss­
baucr measurements of the ratio of basilar membra!1e dis­
placement at a fL'Ced location on the basilar membrane to ma.l.­
leus displacement. Both the WKB appro::-:L-nate solution and 
the more accurate numerical solution are shown. The corre­
sponding parameters ar_e Wr= 2iT (7. 8 kHz), N= 5, 6= 0. 02. and 
d=! em, w,. » w,. (a) Amplitude ratio as a function of fre­
quency Gogarithmic scale). (b) Phase difference measured in 
radians as a function of frequency Ginear scale}. Although 
there is qualitative agreement between theory and experiment, 
a detailed c_omparison in the region of large displacements and 
"breaking" phase is confounded by the oonlinearities in t.'le 
data fou!fd at the very high pure-tone sound intensities used for 
stimulation. These nonlinearities are eviderit in (a), where 
the :unplilude ratio is given for different sound-pressure levels. 

Figure 8. Approximate tuning curves for the cochlear filter model 
. . 

from Zweig, 1975. 
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Fig. 7.3 A spectrogram of the sound of Xenopus, a South 
African toad. 

Figure 9. A wideband sonogram showing pitch converted to time pulses, 

from van Bergeijk, 1960. 
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Figure 10. A sonogram showing pitch doubling in speech: 

the word "one" spoken and analyzed by the author. 
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Figure 11. Characteristics of a soft half-wave rectifying transducer, 

from Schroeder, 1975. 
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CURRENT 'f< fiRING 
PROBABILITY 

" 

CHt.RGE ;; NUI.'.BER OF OUIINTA 

Fig: 18. Electrical analog circuit of model _(39) for mechanical-to­
neural transduction process effected by hau cell: Condu~tancc J?(t) 
varies wi~!l acoustic simulation in half-wave r~cl!fier fash1on. High­
average cvnductance discharges capacitor C, thereby lim.iting curre'!t 
representing firing probability of nerve attached to. hau cell. Th1s 
"'d.-plelion" process of charge on capacitor is thought to account for 

+ v 

the neural "adaptation" seen in Fig. l S. 
Figure 12. The depletion model of transducer adaptation, 

from Schroeder, 1975. 

0 

Figure 13. Response of the soft rectifier with adaptation, 

from Schroeder, 1975. 
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Fig. I 9. Fi,ing prob3bilities of model I 39) for sinusoidal acoustic sig­
nal of 4 ciffcrent input levels. Firing probability follows instanta­
neous ~it;r.al amplitude line3fly at 30 dB. Above 60 dB, firing proba­
t>ili:y corresponds to half-wave rectified signal and changes only 
sli<;l-.tly with further increases in signal level. This model result 
cc.rre~~c·nds to period histograms shown in Fig. 17; 

Fig. 20. Model result illu.slrJiing ricui21 adapt>lion for stlmuhlion v.'ith 
tone burst. AI boll om, temporal extent .(SO ms) of lone bu13t u 
£hown. Compare with Fig. l S. 
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Figure 14. A network for estimating the autocorrelation function of a signal, 

by the author. 
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FIGURE 10 Schematic of effect of retinal field (x-y plane) 
upon conical neuron nt coordinates (tto, 110). 

y . : 
.. 

-- +t- -- ~ ... -- ++- -- ++ 
-- ++ -- -ft -- ++ -- 7-+ 

t+- -- ++ -- ++ -- ... t- --
t+ -- f+ -- f+ -- +t --
-- +-I- -- +t -- ++ -- -++ -- +t -- tl- -- ++ -- ++ 

tt- -- tt- -- H- -- t+ --
. -·-·· -·· -. .. ... - - - .. . .. ... -· -

++ -- ++ -- -++ -- ++ -- .. 
X 

~IGURE 11- Receptive field of cortical neuron at (tta, Vo) 
1f 1~7 re.ccpti~e field is of the· form cos (uo-l:) cos (v0 y). 
Positive IS excitatory; Negative, inhibitory. . 

Figure 15. The receptive field of a neuron in a feature detector circuit. 

from Swigert, 1971. 
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Figure 16. A pattern matching network for a simple associative memory, 

by the author. 
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the signal is big, i.e. when: 

gi(t) > 1/R1. 
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recovery time constant and tightness of coupling increase toward the left. 

average saturation current decreases toward the left. 

Figure 17. Interconnected Adaptation Mechanisms-- the Depletion/Diffusion Model 

by the author. 
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Figure 18. A block diagram of the Signal-Processing Model of Hearing, 

by the author. 
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