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A cascade of two-pole–two-zero filter stages is a good model of the auditory periphery in two

distinct ways. First, in the form of the pole–zero filter cascade, it acts as an auditory filter model

that provides an excellent fit to data on human detection of tones in masking noise, with fewer fit-

ting parameters than previously reported filter models such as the roex and gammachirp models.

Second, when extended to the form of the cascade of asymmetric resonators with fast-acting com-
pression, it serves as an efficient front-end filterbank for machine-hearing applications, including

dynamic nonlinear effects such as fast wide-dynamic-range compression. In their underlying linear

approximations, these filters are described by their poles and zeros, that is, by rational transfer func-

tions, which makes them simple to implement in analog or digital domains. Other advantages in

these models derive from the close connection of the filter-cascade architecture to wave propaga-

tion in the cochlea. These models also reflect the automatic-gain-control function of the auditory

system and can maintain approximately constant impulse-response zero-crossing times as the

level-dependent parameters change. VC 2011 Acoustical Society of America.
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I. INTRODUCTION

Over the last half century, many auditory filter models

have been developed, analyzed, and applied to a variety of

hearing-related problems. Linear filter models, as well as

more realistic quasi-linear level-dependent models have been

explored. Several lines of development, and several criteria

that filter models might try to satisfy, have been reviewed

with respect to their connections and applicability to psycho-

acoustic data, to physiological data, and to machine-hearing

systems; the pole–zero filter cascade (PZFC) model structure

achieves the specified properties better than other models do

(Lyon et al., 2010a).

Quasi-linear (level dependent) auditory filter models can

be seen as belonging to three main families of filters: the

rounded exponential (roex), the gammatone/gammachirp, and

the filter cascade. In many cases, independent efforts led to

somewhat similar results, without necessarily sharing a name

or any other relationship; some of these have been discovered

in retrospect, such as the early 1960s work by Jim Flanagan

on gammatone, one-zero gammatone, and related pole–zero

filter models of basilar membrane motion (Flanagan, 1960,

1962), long before the term gammatone was coined.

Transmission-line models of wave propagation on the

basilar membrane go even further back, but the basis for

approximating these systems as filter cascades was not made

clear until Zweig et al. (1976) showed how to apply the

Wentzel–Kramers–Brillion (WKB) approximation in their

1976 “Cochlear Compromise” paper. They connected a 1D

model of cochlear physics to a circuit model similar to the

old transmission-line models of Wegel and Lane (1924),

Peterson and Bogert (1950), and Ranke (1950), but the

method that they explained led via the WKB method to a

wider class of filter-cascade models of the cochlea, “cascade

filterbanks,” as opposed to conventional parallel filterbanks

(Lyon, 1982, 1998). The reported approach is based on such

cascades that relate to the wave mechanics but draws also on

the gammatone line of development.

Models that incorporate nonlinearites, such as bandpass

nonlinear (BPNL) and dual-resonance nonlinear (DRNL)

models, are typically based on the gammatone or similar

quasi-linear models. Nonlinear extensions can be arbitrarily

complicated, but are often restricted to instantaneous nonli-

nearities in the signal path plus sometimes one or more

level-dependent parameters. The cascade structure allows a

straightforward way to incorporate both of these types of

nonlinearity. The cascade of asymmetric resonators with
fast-acting compression (CAR-FAC) extends the PZFC

model with compressive cubic nonlinearities between reso-

nator stages, as in BPNL models, plus an automatic gain

control (AGC) feedback system to incorporate dynamic level

dependence.

II. AUDITORY FILTER MODELS

The auditory filters considered here include both those

motivated by psychoacoustic experiments, such as detection

of tones in noise maskers, and those motivated by reproducing

the observed mechanical response of the basilar membrane or

neural response of the auditory nerve. These are not necessar-

ily going to lead to the same models, but it is one thesis of this

work that a single model can do a good job for both of these,

and thereby provide a good basis for machine-hearing sys-

tems. Since there are several stages of neural processing

between the cochlea and psychoacoustic perceptions, it would
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not be surprising if the best parameters were different between

these types of models, but it seems likely that the linear and

nonlinear filtering due to the cochlea plays a sufficient role in

perception that one set of parameters may be adequate, at least

for a range of machine-hearing applications.

Duifhuis (2004) recounts the history of cochlear models

and divides them into two classes: (1) the transmission-line

class and (2) the filterbank class. More specifically, he says,

“The major difference is that models in class 1 take physical

coupling between system elements into account, whereas in

class 2 the channels are independent, and coupling is com-

pletely determined by the common input.” Filter cascades

provide a natural model of coupling in the forward direction,

and an AGC feedback network can model some coupling

between channels in both directions, so these cascades can

be viewed as a bridge between Duifhuis’s two classes: they

do not support backward traveling waves as transmission

lines do, but they do model the forward wave to efficiently

implement filterbanks. The filter cascade is the strategy

employed here for abstracting the transmission-line models

into efficiently runnable filter models.

Auditory filters have traditionally been described by the

power–frequency response (roex family) or by the impulse

response (gammatone/gammachirp family). In electrical en-

gineering, descriptions in terms of Laplace-domain poles

and zeros is a more traditional approach to filter description

and specification, with advantages in terms of analysis and

implementation. Some filters, such as the cascade structures

investigated in this work, do not have simple descriptions in

terms of impulse responses or frequency responses but do

have simple and natural descriptions in terms of poles and

zeros (Lyon et al., 2010a).

Several lines of auditory filter models, particularly those

roex-family and gammachirp-family filters that have been

fitted to human masking data, have been reviewed and

assessed relative to models based on filter cascades by Lyon

et al. (2010a).

A. Time-varying and nonlinear auditory filters

Although nonlinearities manifest themselves in various

ways in hearing, there is still good value in quasi-linear mod-

els, that is, those models that can be described as linear fil-

ters but with parameters that depend on signal level. Such

models will not reproduce effects such as distortion products

and suppression but can still capture major masking effects

and the large input–output compression associated with coch-

lear mechanisms and loudness perception (Bacon, 2004).

Linear filters can be parameterized in many ways and

can be made quasi-linear, or signal-level-dependent, by let-

ting some of the parameters depend on input level or output

level or some other control level. The compressive gamma-
chirp is one such level-parameterized filter, an approxima-

tion to the gammachirp using movable poles and zeros; two

versions, parallel and cascade gammachirp models (PrlGC

and CasGC) have been explored (Irino and Patterson, 2001;

Unoki et al., 2006). The all-pole gammatone filter (APGF),

one-zero gammatone filter (OZGF), all-pole filter cascade

(APFC), and pole–zero filter cascade (PZFC) are similarly

given a compressive nonlinear response via movement of

their poles (Lyon, 1997; Katsiamis et al., 2007; Lyon et al.,
2010a).

Kim et al. (1973) introduced a model that incorporated

ten cascaded stages of two-pole filters modified to have non-

linear damping terms in their differential equations. In the

small-signal linear limit, their system is a 10th-order all-pole

filter. It is close to an APGF, but the 10 stages have their nat-

ural frequencies decreasing at 3% per stage (over a total

range of less than a half octave), so it is also a short piece of

an APFC. The distributed nonlinearity was motivated by

hydrodynamic wave propagation, so it resembles a nonlinear

APFC in that respect, as well. At the time, with borrowed

time on a PDP-12 minicomputer, ten stages with one output

was all they could simulate. Motivated partly by interaction

with Molnar, Lyon and Mead (1988) extended this system to

a full multi-output APFC analog VLSI cochlea using nonlin-

ear two-pole stages. Nonlinear distortion products that arise

in such cascades are not modeled in quasi-linear auditory fil-

ter models such as the PZFC but can be included in dynamic

models such as the CAR-FAC.

The filter-cascade family of auditory filter models is

treated here, like other families, mainly in its quasi-linear

version. But its architecture does provide a natural frame-

work for incorporating nonlinear processes that interact with

the traveling wave. A dynamic time-domain version of the

PZFC model for processing sounds in machine-hearing

applications can include instantaneous and fast-acting non-

linear effects in the cascaded filter stages. This application

of the PZFC was introduced in a previous paper (Lyon et al.,
2010b). To avoid confusion between the quasi-linear audi-

tory filter modeling application and the machine-hearing

applications, the dynamic time-domain version of the PZFC

is now referred to as the CAR-FAC.

The OZGF is treated here because it is a very simple

gammatone-like abstraction of the quasi-linear PZFC,

sharing many of its properties, including description in terms

of level-dependent s-plane pole damping, a linear low-

frequency tail and good asymmetric resonance shape that

lead to good fits to masking data, and the ability to match

physiological impulse responses. But as an approach to

building machine-hearing systems, a parallel filterbank

based on OZGF channels would not be nearly as computa-

tionally efficient as a cascade architecture, and would not

have any natural relationship to traveling waves.

B. Level dependence via output-level feedback

In an AGC-based model, a feedback loop works to keep

the output level from varying too much; the output level is

fed back through parameters such that higher outputs lead to

lower filter gains, resulting in a compressive input–output

function. This scheme works well for auditory filter models

that are parameterizing by their output level, as opposed to

their input level. Rosen et al. (1998) have shown that the for-

mer provide better fits to masking data.

In the case of the PZFC auditory filter model, we control

the damping of all the cascaded stages by the output level at

one place, just as the other models are controlled by a single
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output level. In the CAR-FAC, by contrast, all of the filter out-

put levels interact in the AGC network to jointly control all of

the damping parameters. Therefore, the PZFC filter model is

not a perfect model of the CAR-FAC in action, but it works

about like the other auditory filter models in this respect, with

level control coming from a single filter’s output.

C. Nonlinear frequency scales

A model for a single auditory filter channel is of limited

use. The ear uses a large set, almost a continuum, of filter

channels to analyze sounds into many parallel signals to

send to the brain via the auditory nerve. For machine-

hearing applications, a not-too-sparse set of channels is

required. It is not clear what the sampling criterion should be

for filterbanks, especially if the output is not being used just

for a power measurement or just for signal reconstruction.

About 50% overlap, relative to the equivalent rectangular

bandwidth, will likely provide a more well-behaved repre-

sentation of a sound than non-overlapping channels would.

Each equivalent rectangular bandwidth (ERB) at moder-

ate levels (ERBN), as estimated by psychophysical experi-

ments, corresponds to about 0.89 mm on the BM (Glasberg

and Moore, 1990; Moore, 1995), so that would be about 39

channels in 35 mm, without overlap, or 78 channels with

50% overlap. According to the Greenwood map, 0.89 mm is

about a factor 0.88 in frequency from one channel to the

next, in the upper octaves, or about 5.6 channels per octave.

At 50% overlap, that is about 11 channels per octave.

Machine hearing models typically use about 60 to 100 chan-

nels in total.

III. FILTER CASCADES

The structure of the filter cascades (whether all-pole,

pole–zero, or other form) derives from a simple observation

of how filter cascades can make good models of wave propa-

gation in nonuniform systems such as the cochlea, starting

with linear wave propagation and adding nonlinearity later.

A. How filter cascades work

The method known as WKB (or sometimes Liouville–

Green) provides insight into wave propagation in nonuniform

linear media such as the cochlea. The method says that if a

wave is propagating from the input along one dimension,

then the response from the input to any point can be found by

composing the relative responses from each point to the next

along that dimension, using local parameters as though the

medium were uniform, with some correction gains, if needed,

to enforce conservation of energy as the medium changes.

The factors that depend only on local properties can be inter-

preted as filters arranged in cascade (Lyon, 1998):

HnðxÞ �
Yn

j¼1

expð�ikðx; xjÞDxÞ: (1)

Here Hn(x) is a net filter transfer function (of the type

needed for a linear or quasi-linear auditory filter model) at

place number n, and the individual factors in the product are

cascaded filter stages representing segments of length Dx of

the wave propagation medium (in the case of the cochlea,

from the base to any of a discrete set of places xn¼ nDx, x
being distance along the basilar membrane). The wavenum-
ber k(x, x) is a function of both frequency and place, since

the medium is nonuniform. In the case of the segmental

approximation implied by the WKB method, k(x, xj) is the

average value of k over segment number j; that is, the seg-

ment is treated as if it were a short piece of a uniform

medium.

The value of the function k(x), a solution of the disper-
sion relation for the medium, is real for a lossless wave-

propagation medium but can be complex to represent either

dissipation or active amplification in the medium. Both posi-

tive and negative imaginary parts are needed to represent

active gain followed by dissipation. The log magnitude gain

of each cascaded stage is simply proportional to the imagi-

nary part of k, while the phase delay is proportional to the

real part.

Therefore, independent of the details and dimensionality

of the underlying wave mechanics, the responses of the

cochlea at a sequence of places are equivalent to the

responses at the outputs of a sequence of cascaded filters.

The WKB method constrains the design of those filters when

the underlying physics is known. Alternatively, any design

for a cascade of filters implies a corresponding approximate

dispersion relation. The problem of designing practical runn-

able models than becomes the problem of finding simple

rational transfer functions (poles and zeros) to approximate

non-rational transfer functions of the form exp(�ik(x)Dx)

for k(x) resembling the actual mechanics of the cochlea. If

the mechanics are not known well enough to lead to a good

model, the alternative is to fit parameters for a simple stage

transfer function, given whatever data are available.

Since Hnþ1(x) shares n factors, or filter stages, with

Hn(x), it is very efficient to process signals through an entire

bank of filters concurrently; the computational cost per filter-

bank output is just the cost of running a sound through a sin-

gle simple stage filter.

Even for nonlinear and time-varying wave mechanics,

one can reasonably assume that a nonlinear and time-varying

filter cascade will be a useful structural analog and a fruitful

modeling approach: modeling local behavior with local fil-

ters, shared over a bank of outputs.

B. Filter-cascade stages with zeros

The original model of Lyon (1982) incorporated pairs of

both poles and zeros as anti-resonant notch filters in the filter

cascade, motivated by the series-resonant circuits in the

long-wave transmission-line model of Zweig et al. (1976).

Lyon and Mead (1988) later focused on cascades of simpler

two-pole stages, motivated by an analysis of a 2D short-

wave model with pseudo-resonant behavior. With these all-

pole cascades, it was hard to get a sharp enough high-side

rolloff without excessive delay. Going back to the use of a

zero pair at a frequency somewhat higher than the pole pair

both gives a sharp cutoff and reduces the overall delay, as

suggested by Lyon (1998). The PZFC therefore differs both
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from the APFC of Lyon and Mead (1988) and Slaney and

Lyon (1993) and from the early more complicated cascade–

parallel pole–zero structure of Lyon (1982).

Both the APFC and the PZFC illustrate the fact that fil-

ter cascades can exhibit a very substantial group delay, even

though they are minimum-phase filters. This delay corre-

sponds to the wave propagation delay in the cochlea, and is

associated with the steep high-frequency rolloff. The delay

is adjustable in the filter models via the relative pole and

zero positions.

Since a cochlea-like response arises from individual

stages as simple as second-order filters, each described by a

complex-conjugate pair of poles and a complex-conjugate

pair of zeros in the s plane, that is the level of complexity

chosen for the PZFC. If better data are found from cochlear

mechanics, the stage model can be revised, perhaps to higher

order, as needed.

C. The PZFC/CAR-FAC architecture

The cascaded filter stages used in the PZFC, and in its

dynamic CAR-FAC extension, are second-order filters, each

described by a complex-conjugate pair of poles and a com-

plex- conjugate pair of zeroes in the s plane. The zeros are

positioned slightly above the poles in frequency, leading to a

peak in gain near the pole frequency, followed by a sharp

gain drop at higher frequencies—an asymmetric resonator.

The initial (in quiet) positions of the poles and zeros are

set for each stage, and level-dependence is achieved by mod-

ifying the pole damping in each stage in response to the fil-

terbank’s output levels. This modification of pole damping,

or equivalently pole Q, corresponds to moving the pole along

a circular trajectory in the s plane, as shown in Fig. 1, and

thus the peak frequency of the resonance shifts a little as the

gain and bandwidth of the resonance changes.

The initial pole positions are spaced proportional to

nominal ERB as a function of frequency (from high to low

in the cascade, to model wave propagation from base to

apex), using the formula of Glasberg and Moore (1990). The

zeros at each stage are placed at a frequency that is a

constant factor above the pole (typically about a half octave

higher).

For the CAR-FAC, nonlinearity is incorporated by both

a dynamic level-dependent positioning of the poles and an

instantaneous cubic distortion at the output (between stages),

like that between the bandpass filters in BPNL models. In

the case of the PZFC, no instantaneous or dynamic nonli-

nearity is included, since the auditory filter framework used

in fitting human masking data requires a quasi-linear filter

model.

The PZFC filterbank architecture can be seen as inter-

mediate between the all-pole filter cascade (Slaney and

Lyon, 1993) on the one hand and cascade–parallel models

(Lyon, 1982) on the other hand. As an auditory filter model

with level dependence, the PZFC is quasi-linear but exhibits

nonlinear compression. The compression exhibited by the

dynamic CAR-FAC, on the other hand, includes both a

fast-acting AGC part, similar to that of the “dynamic com-

pressive gammachirp” (Irino and Patterson, 2006), and an in-

stantaneous part, from an odd-order nonlinearity similar to

that in the “dual-resonance, nonlinear” (DRNL) model

(Lopez-Poveda and Meddis, 2001) or the nonlinear model of

Kim et al. (1973).

D. PZFC/CAR-FAC transfer functions

The complex transfer function of one stage of the linear-

ized PZFC is a rational function of the Laplace transform

variable s, of second order in both numerator and denomina-

tor, corresponding to a pair of zeros (roots of the numerator)

and a pair of poles (roots of the denominator):

HðsÞ ¼ s2=x2
z þ 2fzs=xz þ 1

s2=x2
p þ 2fps=xp þ 1

; (2)

where xp and xz are the natural frequencies and fp and fz

are the damping ratios of the poles and zeros, respectively.

Figure 2 shows the transfer function gain of all the out-

puts of the filter cascade, in the case of silence, and as

adapted to a vowel sound at moderate level.

E. CAR-FAC implementation

In auditory-model-based machine-hearing applications

of these filters, the first processing step, the dynamic coch-

lear model, is the CAR-FAC based on the PZFC auditory fil-

ter model plus a coupled AGC loop (Lyon et al., 2010b), as

illustrated in Fig. 3. It produces a bank of bandpass-filtered,

compressed, half-wave rectified, output signals that represent

the response of the inner hair cells along the length of the

cochlea. The CAR-FAC can be viewed as approximating the

auditory nerve’s instantaneous firing rate as a function of

cochlear place, modeling both the frequency filtering and the

compressive or AGC characteristics of the human cochlea

(Lyon, 1990); it currently models the inner hair cell as a sim-

ple half-wave rectifier rather than a better model with deple-

tion and smoothing.

The filters are implemented as discrete-time approxima-

tions at sample rate fs (22 050 Hz, for example) by mapping

FIG. 1. Diagram of the motion of the poles of a PZFC or CAR-FAC stage

in response to a gain-control feedback signal, and the effect on the resonator

gain. The positions indicated by crosses in the s plane plot (left) correspond

to pole damping ratios (f) of 0.1, 0.2, and 0.3, while the zero’s damping ratio

remains fixes at 0.1. Corresponding transfer function gains (right) of this

asymmetric resonator stage do not change at low frequencies but vary by

several decibels near the pole frequency. The fact that the stage gain comes

back up after the dip has little effect in the transfer function of a cascade of

such stages.
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the poles and zeros from the s plane to the z plane using

z¼ exp(s/fs) as is conventional in the simple “pole–zero

mapping” or “matched Z-transform” method of digital filter

design (Yang, 2009).

The CAR-FAC poles are modified dynamically by feed-

back from a spatial/temporal loop filter, or smoothing net-

work, thereby making an AGC system. The smoothing

network takes the half-wave-rectified outputs of all channels,

applies smoothing in both the time and place dimensions,

and uses both local and more global averages of the filter-

bank response (that is, a mixture of different time scales and

space scales of smoothing) to proportionately increase the

pole damping of each stage. This coupled AGC smoothing

network descends from one first described by Lyon (1982);

in that work, the loop filter directly controlled a post-

filterbank gain rather than a pole damping as it does in more

recent versions.

IV. FITTING FILTERS TO MASKING DATA

A. Human notched-noise masking data

A notched noise consists of two frequency bands of

noise with a quiet frequency band (the notch) between them,

as shown in Fig. 4. Such noises have been used as maskers

in tone-detection experiments, to get at the filtering that the

auditory system does, since the 1950s (Webster et al., 1952);

the method became more important in the 1970s (Patterson,

1976; Patterson and Nimmo-Smith, 1980), after it became

clear that listeners were employing an “off-frequency

listening” strategy to detect masked tones. That is, listeners

would effectively choose to pay attention to a filter channel

with best signal-to-noise (SNR) (or tone-to-masker) ratio,

rather than to the channel with the filter’s peak frequency

matched to the probe tone. Experiments with asymmetric
notched noise, that is, using probe tones placed off-center in

the notches, provided a way to better assess the effects of

different parts of the auditory filter shape.

A number of teams have repeated and extended experi-

ments on human detection of tones in asymmetric notched-

noise maskers (Lutfi and Patterson, 1984; Glasberg et al.,
1984; Moore et al., 1990; Rosen et al., 1998; Baker et al.,
1998). Others provided increasingly sophisticated analyses

to derive auditory filter shapes that would predict the experi-

mental data (Patterson and Moore, 1986; Moore and Glas-

berg, 1987; Glasberg and Moore, 1990; Rosen and Baker,

1994; Irino and Patterson, 2001; Patterson et al., 2003;

Unoki et al., 2006). Their data and methods are used and

extended in this paper to provide parameter fits for the

OZGF and PZFC and related filter models.

Two large datasets, covering a range of frequency pat-

terns and levels, with several subjects in each set, have

been used to fit and compare different auditory filter mod-

els; the same datasets are used in the present study. The

first (Baker et al., 1998) used nine subjects and seven tone

FIG. 2. Adaptation of the overall filterbank response at each output tap.

(Top) The initial response of the filterbank before adaptation. (Bottom) The

response after adaptation to a human/a/vowel of 0.6 s duration. The plots

show that the adaptation affects the peak gains (the upper envelope of the fil-

ter curves shown), while the tails, behaving linearly, remain fixed.

FIG. 3. Schematic of the CAR-FAC design.

The cascaded filter stages (upper row) have

variable peak gains, which are controlled by

their damping ratios, set by feedback from the

coupled AGC filters (lower row). The “control”

signals can be fast-acting in response to an

onset, but usually vary slowly. In the case of

quasi-linear PZFC filter models, the control val-

ues are static but level-dependent.
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frequencies, with noises that were flat (white) within the

noise bands; the second (Glasberg and Moore, 2000) used

four subjects and five tone frequencies, with a uniformly
exciting noise, that is, spectrally shaped to provide approxi-

mately equal excitation per critical band. For most, includ-

ing the present, filter fitting studies, only the mean

thresholds across the subjects within each group were used.

Both datasets, totaling 1277 mean detection threshold data

points, can be accommodated together in fitting auditory fil-

ter parameters.

B. Nonlinear filter fitting approach

Here fitting refers to the process of finding the best val-

ues of the parameters of auditory filter models; best means

that the model’s predicted tone detection thresholds are as

good as possible, that is, that the sum of squared errors,

between the human data and the model prediction, is mini-

mized. This is a basic least squares optimization problem,

but since the system (predictions as a function of parameters)

is nonlinear, it takes a more complicated search to find the

optimum.

For the nonlinear optimization process, the methods of

Irino and Patterson (1997), Patterson et al. (2003), Unoki

et al. (2006) are followed, using the Levenberg–Marquardt

algorithm and the combined datasets (Baker et al., 1998;

Glasberg and Moore, 2000); none of this work would have

been possible without the generous help of all of these

authors, and their code and data.

Each auditory filter model has its own parameters that

need to be adjusted; in addition, there are three non-model

parameters that are fitted in every case.

(1) The center frequency of the filter: for each set of filter

parameters, the filter’s CF dimension is searched to opti-

mize the SNR at the filter output.

(2) The noise floor: a parameter P0 that represents an inter-

nal noise power (added to any other noise that is present)

is needed to model the approach of masked threshold to

absolute threshold at low levels.

(3) The detection threshold criterion: a parameter K repre-

sents the output SNR at which the model predicts detec-

tion of the probe tone.

In the filter fitting framework and MATLAB code pro-

vided by Unoki, several changes have been made to get bet-

ter fits, and to fit to a wider class of models.

(1) Level-dependent parameters depend on the output level

of a filter (sometimes a linear “passive” filter) with

noise-only input, as opposed to noise-plus-probe level;

using the latter was found to provide an unfair extra clue

to predicting the probe level.

(2) Optionally, the level-dependent filter model itself can be

used as the level-detection filter, in a feedback configura-

tion, necessitating an inner search over filter output level

for each set of parameters being evaluated in the search.

(3) The nonlinear fit search integrates optimization of P0,

but for each set of parameters being searched, K is

quickly computed linearly (in dB space).

(4) P0 is redefined as an input-referred noise level, so that

filters with variable gain will behave right; it had previ-

ously been used as a noise level added at the filter output

after SNR optimization.

(5) The search for best CF was made via nearly continuous,

rather than discrete choices, so that the system being

optimized would be differentiable in all parameters; this

change helped the search converge to a better optimum,

compared to published results on the combined dataset

(Unoki et al., 2006).

Figure 5 shows the structure of the filter model configu-

rations considered in this and prior work. For the present

study, the PrlGC and CasGC models are modified to be feed-

back versions by taking the level detector input from the

final output instead of using a feed-forward connection from

a “passive” filter. The passive filter is still used as part of the

PrlGC and CasGC model structures, but in the feedback con-

figuration the passive filter’s output is no longer what con-

trols the level-dependent parameters.

In all cases, only a few parameters (one or two in each

model) were allowed to depend on level, and those only with

a dependence that is linear in the filter output level in dB.

The model parameters are optionally frequency-dependent, to

support fitting one model at multiple probe frequencies (Pat-

terson et al., 2003); extra parameters optionally let the filter

parameters, and P0 and K, be linear or quadratic functions of

the probe frequency (on an auditory ERB-rate frequency

scale). In counting model parameters (“filter coefficients”),

the parameters that allow frequency dependence are also

FIG. 4. The “asymmetric notched noise” masking paradigm, and data from

human listeners, were introduced with this figure that explains the signifi-

cant shifts between the filter with best SNR and the filter with CF at the

probe-tone frequency (Patterson and Nimmo-Smith, 1980). In each example,

the filter with best probe-tone-to-masking-noise ratio in its output (solid

curve) is near the filter with highest probe-tone output power (dashed curve,

filter with peak at probe-tone frequency f0) but shifted in the direction that

reduces the noise power output (generally toward a point slightly to the right

of the center of the notch).
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counted, but the 6 parameters (the “nonfilter coefficients”)

that allow P0 and K to be quadratic functions of frequency

are not counted. Generally, models that lead to a low rms

error with few filter parameters are preferred; another useful

criterion is the ability of a model fitted to one dataset to pre-

dict results of another; that is, to generalize across different

conditions and subjects.

C. Fitted psychoacoustic filter shapes

Parameter fits were done for several filter models in this

study; the model types are displayed in Table I for easy refer-

ence. All are feedback configurations, including the feedback

versions of PrlGC and CasGC described above. Other models

included are the simplified gammatone-family types (OZGF

and its special cases, the APGF and the differentiated APGF

or DAPGF) and the two filter-cascade types, APFC and

PZFC. Parameters were fitted using the datasets described

above, which had previously been used with a range of roex

and gammachirp models without feedback. By using feed-

back control of parameters, all of the models easily achieve a

compressive input–output relationship, thereby avoiding the

need for other constraints that had previously been used to

ensure sensible level dependence (Patterson et al., 2003).

Concerning the ability to fit the data by optimizing a

large number of parameters, Rosen et al. (1998) had conjec-

tured, “…models with similar goodness-of-fit lead to filter

shapes that are very similar. Therefore it is not particularly

important which model is chosen from the ‘better-fitting’

ones. The relatively large number of good-fitting filter

shapes is also an indication that the roex(p, w, t) shape may

be too flexible. There are likely to be other adequate func-

tional forms with fewer controlling parameters (e.g., Irino

and Patterson, 1997 [gammachirp]; Lyon, 1996 [all-pole

gammatone]).”

It has already been shown that the gammachirp can pro-

vide better fits with fewer parameters than the roex (Unoki

et al., 2006). The current work finds that the APGF, OZGF,

and PZFC can provide better fits with fewer parameters than

the various roex filers, and also better and/or with fewer pa-

rameters than the gammachirp versions. At the lowest num-

bers of parameters, two extremes of the OZGF—the APGF

with 3 parameters and DAPGF with 4 parameters—are the

best-fitting models. At 5 parameters, the OZGF with opti-

mized zero location fits best. With 6 or more parameters, the

PZFC fits best. If it is “not particularly important which

model is chosen,” then it is probably a good idea to use mod-

els that are easy to run efficiently and that connect well to

traveling waves.

These experiments confirm that a filter architecture that

gives a natural coupling of gain, bandwidth, and shape to

level-dependent parameters provides a parsimonious model

with no loss of realism (relative to these datasets at least). At

the same time, this architecture provides the stable low-

frequency tail similar to that which had been added by devel-

oping compound structures (parallel or cascade) for the

level-dependent roex and gammachirp models.

These experiments also confirm the value of the AGC-

like form of feedback shown in Fig. 5 (bottom) (Lyon, 1990;

Carney, 1993), where the filter’s own output is the signal

whose level controls its parameters. The filter models based

on feedback from the output always provided better fits with

fewer parameters than the models with forward control from

the input noise spectrum. In the typical alternative to using

the filter’s own output to control its parameters, others

(Zhang et al., 2001; Unoki et al., 2006; Rosen and Baker,

1994; Tan and Carney, 2003) have used a control-path filter

whose output controls the parameters of the signal path. This

approach can be easier to implement, as it is a feed-forward

computation, but the idea of a separate control-path filter is

hard to reconcile with the structure of the auditory system.

In the PZFC model, the zero frequency is a parameter-

ized ratio times the pole frequency (the ratio that maps pole

frequency to zero frequency can optionally be allowed to

vary linearly or quadratically with pole frequency, using the

available fitting parameters).

FIG. 5. Parallel (top), cascade (middle), and feedback (bottom) structures

for level-dependent auditory filter models. The PrlGC and CasGC models

originally used the upper and middle structures as a way to achieve a con-

trollable gain near the tip while keeping a stable low-frequency tail. In the

case of the PrlGC model, following an older parallel roex structure, the ad-

der is actually adding power levels (Unoki et al., 2006), not signals, so this

model structure does not correspond to an actual filter.

TABLE I. Acronyms for the different auditory filter models discussed are

tabulated here for reference; they are ordered from simplest to most com-

plex, or number of fitted parameters required, roughly.

Acronym Definition

APGF All-pole gammatone filter

DAPGF Differentiated APGF

OZGF One-zero gammatone filter

APFC All-pole filter cascade

PZFC Pole–zero filter cascade

PZFC5 PZFC with movable zeros

PrlGC Parallel gammachirp

CasGC Cascade gammachirp
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The pole bandwidth is computed proportional to the

ERB, using factors such that the b2 parameter (which may

itself be frequency dependent) is the nominal bandwidth rel-

ative to the ERB when the order is 4:

BWp ¼
1

2

ffiffiffiffiffi
n2

p
b2ERBw; (3)

where the “order” parameter n2 is the gammatone order, or

the channels-per-ERB of the PZFC. The bandwidth factor b2

depends geometrically on level (linearly in the dB or log-

bandwidth domain) according to

log10ðb2Þ ¼ log10ðB2Þ þ B1
2

Pp � 60

20 B2 n2

� �
; (4)

where Pp is the output power of the filter, on a dB scale (Pp

is typically 60 to 100 dB for the filter gains and input levels

used, and corresponds to the input level in dB SPL amplified

by the level-dependent filter transfer function). The B2 pa-

rameter is the nominal bandwidth (relative to the ERB) at an

output power of 60 dB. Other factors scale the level depend-

ence parameter B1
2 to a convenient value; the inclusion of B2

in the denominator in the scaling means that there will be

less level dependence in high-relative-bandwidth channels,

when B2 is frequency dependent. This formula is an example

of what are called structural parameters embedded in the

model; such parameters have not been counted in comparing

the model complexities.

Fits with linear instead of geometric pole bandwidth

variation have also been tried; also with and without the B2

in the denominator of the level dependence. The model

described works best, by a small margin, so in that sense

these structural parameters have been fitted.

Similar optimizations have been done in the construc-

tion and parameterization of the other models that were pre-

viously published; such decisions are not explicitly

accounted for in the parameter counts.

An example of a parameterization of the PZFC model,

with 9 fitted parameters, is shown in Table II.

D. PZFC and OZGF provide good fits with few
parameters

Katsiamis et al. (2007) predicted that “the DAPGF or

OZGF will provide a significant benefit in applications

that need a better model of level dependence or a better

low-frequency tail behavior”; this prediction is somewhat

confirmed with respect to human masked-threshold data. As

shown in Fig. 6, the best fits at each number of parameters

are always OZGF or PZFC models.

When the OZGF is specialized to an APGF or DAPGF

(no zero, or zero at DC, respectively), the zero-position pa-

rameter is not counted; the model with only 3 parameters (fit

120) is an APGF model, with only a linear dependence of

bandwidth on frequency; at 4 parameters, a quadratic fre-

quency dependence is added, and the DAPGF (fit 119) is

best. At 5 parameters, the zero is added to make a full

OZGF, fit 127; at 6 parameters, nothing helps much.

With more parameters (7 to 13), the PZFC provides the

best fits. The gammachirp models typically need 3 to 5 more

parameters to fit the data as well. These results suggest that

the OZGF is “simplest” but that the connection of the PZFC

to the underlying traveling wave mechanics makes it most

“realistic” with not much additional complexity. Since the

PZFC is also the one that has the lowest computational cost

when used for a filterbank (with the possible exception of

the APFC), it is a good base for the CAR-FAC used in

machine-hearing applications.

The implication that one or another filter model is really

the “best” should be evaluated with a dose of skepticism, in

light of the possibility of over-fitting that is a common issue

in machine learning. This possibility was investigated by

training the models on just one dataset [the one from Baker

et al. (1998)], and then testing on the other (Glasberg and

Moore, 2000), to see how well the retrained model general-

izes from the training set to the test set. The models that gen-

eralize well are often not the ones with the lowest fitting

error on the combined dataset.

As previously observed by Patterson et al. (2003), the

difference between the datasets from the two labs is larger

TABLE II. A PZFC model with 9 filter parameters (fit 530); the channel

density is fixed at 2 and not counted. The pole damping b2 is computed from

the CF-dependent B2 as modified by the output power level (in dB) times

B2
1. In this version of the model, the zeros do not move with level.

Name Function f dependence #

b1 Zero bandwidth Quadratic 3

B2 Pole bandwidth Quadratic 3

B2
1 Pole BW level dependence Constant 1

n2 Channels per ERB 2 (fixed) 0

frat Ratio of zero freq. to pole freq. Linear 2

FIG. 6. Threshold-prediction rms errors for various filter models, versus

number of fitted parameters, on the combined dataset. The fit numbers are

for reference only; different filter models are identified by different symbols,

as shown in the legend. For each model type, only the fit with lowest error at

each number of parameters is shown; the errors are monotonically decreas-

ing, since adding a free parameter never increases the error. The PZFC5 var-

iants (þ), such as fit 625, are the PZFC modified to have the zeros move

with level, parallel with the poles, as opposed to the original PZFC (�) for

which the zeros are fixed.
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than the typical differences between models, with the Glas-

berg and Moore data showing low level dependence at some

frequencies, and high at others, compared to the more regu-

lar Baker et al. (1998) data. In the present experiment, the

OZGF and PZFC5 with 4 to 8 parameters yield the best gen-

eralization to the Glasberg and Moore data at frequencies

below 4000 Hz, with PZFC close behind; but at 4000 Hz the

gammachirps do best at 6 and more parameters. These

results suggest that the PZFC5 has no net disadvantage rela-

tive to the PZFC, but otherwise do not tell us which model is

best.

The filter shapes for a representative model of each

type, in the range that generalizes not too poorly, are plotted

in Fig. 7. The shape details show the different “personalities”

of the various model types in trying to fit the data.

The OZGF with only 5 parameters (fit 127) illustrates

the point that a simple model using one cluster of movable

poles and one fixed zero is a fairly good fit to the data. As

shown in Fig. 8, the shapes of the OZGF’s simplest special

cases with even fewer parameters (with the one zero moved

to zero or to infinity) are generally similar to the best OZGF

fit found, except in the low-frequency tail, and still fit fairly

well, since moving the poles still gives a realistic level-

dependent coupling of shape, bandwidth, and peak gain.

This behavior is inherited by the filter cascades, but a few

more parameters are needed to describe the placement of the

zeros in the PZFC.

V. IMPULSE RESPONSES AND PHYSIOLOGICAL DATA

From auditory-nerve data, one estimates impulse

responses—really first-order Volterra kernels—by the pro-

cess of reverse correlation: every time the neuron fires an

action potential in response to a noise, a piece of the noise

FIG. 7. Auditory filter gain plots for

the best of each of six model types.

The frequency axes are on the ERB-

rate scale. In each case, the curves

represent filter gain when the tone

detection thresholds are 30 dB (high-

est curves), 50 dB, and 70 dB (lowest

curves). The curve spacing is related

to the input–output compression:

curves close together, as at 250 Hz,

correspond to a response that is only

slightly compressive, while curve

tips 15 dB apart represent a 4:1 com-

pressive response. The model ERBs

range from approximately the nomi-

nal ERB to more than twice that.
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waveform that led up to it is added to a waveform accumula-

tion buffer. The shape of the sum in the buffer (divided by

the number of segments added) approaches the effective

time-reversed impulse response of the cochlea at the point

innervated by the neuron, as described by de Boer (1976)

and de Boer and de Jongh (1978). These correlation-derived

impulse responses are called revcor functions.
Filter models whose impulse responses closely resemble

the neural revcor data, or corresponding mechanical data,

are thus physiologically supported. Indeed, the gammatone

model was introduced as a simple approximation to revcor

functions measured in cats (Johannesma, 1972).

Data from mechanical and neural experiments (Carney

et al., 1999; Robles and Ruggero, 2001; Shera, 2001) show

that the zero-crossing times, or local phases, of the filter’s

output in response to impulses are variably spaced, unlike

the zero-crossings of the gammatone, and do not change

much with signal level. This observation puts an important

constraint on how the auditory filter model should behave as

its level-dependent parameters are varied.

In the case of the gammatone, gammachirp, and APGF

models, the zero-crossing times of the impulse responses

remain exactly fixed as the exponential decay time parameter

is varied; this variation corresponds to moving the poles of fil-

ters horizontally (varying real part) in the s plane. In the case

of gammachirp (and its special case, the gammatone), this sta-

bility of zero crossings is apparent from the time-domain

description in which a decay-time-dependent envelope multi-

plies a fixed oscillating term that determines the zero cross-

ings, as has been pointed out by Irino and Patterson (2001)

when they fitted gammachirp filters to both human masking

data and cat auditory nerve impulse responses:

hGCFðtÞ ¼ tN�1 expð�btÞ cosðxrtþ c logðtÞÞ: (5)

In the case of the APGF, a similar relationship is apparent

when the impulse response is written in a similar way, which

involves a Bessel function in place of the sinusoid:

hAPGFðtÞ ¼ tN expð�btÞjN�1ðxrtÞ; (6)

where jN�1 is a spherical Bessel function.

Shera (2001) has also shown that this direction of pole

motion in basilar-membrane- impedance models leads to

nearly fixed zero-crossing locations.

For the gammatone, APGC, OZGF, PZFC, and other fil-

ters representable as rational transfer functions, the zero

crossings are exactly fixed if the poles and zeros are all

moved horizontally in the s plane by equal amounts. This ob-

servation follows from the shifting property of the Laplace

transform, which says that shifting the Laplace transform by

d corresponds to multiplying the impulse response by

exp(dt). For real d, corresponding to horizontal movement,

this change of envelope will not affect the zero crossings; it

corresponds to adjusting the real b in the factor exp(�bt) in

the above equations. Of course, if d is too big, moving one

or more poles into the right half of the s plane, then b is neg-

ative and exp(�bt) will increase without bound; neverthe-

less, the zero-crossing times will not change.

In some systems, it may be more natural to vary the

damping, or pole Q, leaving the poles’ natural frequencies

fixed, in which case the poles move along a circle in the s
plane, centered at the origin and of radius equal to the natu-

ral frequency xn (in a simple harmonic oscillator, natural

frequency is determined by the mass and spring constant,

independent of the damping). This is what the reported

CAR-FAC implementation used (Lyon et al., 2010b).

For the filter model fitting, it makes no difference, since the

optimal CF is selected for each data point. When damping is

low, horizontal motion is nearly tangent to the circle, so

these directions are not so different; but they may be differ-

ent enough to make a testable difference in how well a

model matches the observed zero-crossing stability. Moving

the zeros by different amounts from the poles can approxi-

mately compensate for the effect of moving along non-

horizontal trajectories, at least in the early part of the

impulse response. In the long-time limit, the decaying

impulse response will ring at the ringing frequency of the

pole with the longest time constant (that is, later zero-

crossing intervals will be determined by the imaginary part

of the pole with real part closest to zero).

In the filter-cascade models, the poles and zeros of the

different stages move in a coordinated way based on the

level parameter, but in amounts proportional to their fre-

quencies, so the shifting property does not exactly apply.

Nevertheless, reasonable choices of pole and zero motion

directions and amounts lead to stable zero crossings, as illus-

trated in Fig. 9. The first fitted PZFC model, in which the

zeros are fixed and the poles move, does not achieve stable

FIG. 8. The two degenerate cases of

the OZGF, the APGF (left) and the

DAPGF (right), provide good fits

with only 4 parameters (quadratic

bandwidth, and a bandwidth-level-

dependence coefficent). They differ

from the better-fitting OZGFs (the

ones with more parameters) in the

low-frequency tails, especially in the

differentiated case (the DAPGF,

which has a zero at DC).
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zero crossings—the zeros need to move about as much

as the poles do. In a modified model called PZFC5, the

bandwidths of the zeros change in proportion to the band-

width of the poles, at each stage, with the constant of propor-

tionality being a fitted parameter that is optimized at about

1.14; the resulting fits to the masking data are not quite as

good as the original PZFC is. In such a cascade, the zeros

stay close to the poles of an earlier stage, approximately

canceling out most of the effects of the cascade except for a

few uncanceled poles in stages just basal to the place under

consideration; the net filter is close to an all-pole model, and

the fitting results are very close to the APGF or OZGF

fitting results, as shown in Fig. 7. Zero-crossing stability is

not enforced, but the free parameter that determines how

much the zeros move happens to give stable zero crossings

in typical fits. Other ways of coupling the zero motion to the

pole motion were not as good, in terms of zero-crossing

stability.

Impulse responses and instantaneous frequency analysis

from revcor and cochlear mechanics experiments also show

a “glide” or “chirp” in the response of the cochlea, with an

upward glide at high CF and a downward glide at low CF

(Tan and Carney, 2003); this glide corresponds to the

unequally spaced zero crossings mentioned above. In gen-

eral, if the filters are minimum phase, the glide direction will

be determined by the frequency response gain asymmetry;

filters with a sharp high side will have an upward glide; that

is, the initial cycles of the response will be at lower frequen-

cies than the later cycles. To the extent that filter models get

the asymmetry right, they will get the glide about right, as

long as they are minimum phase, which most of the consid-

ered models are (gammatone and gammachirp filters are not

quite, but their complex versions, all-pole versions, and

approximations are).

Another important aspect of impulse-response data is

the group delay; again, delay is determined by the amplitude

response in the case of minimum-phase models. The gamma-

tone filters have their delay tied to filter shape and band-

width, with higher orders providing more delay along with a

somewhat different overall shape. The PZFC allows, by

adjustment of the zeros, considerable room to tune the delay,

to more or less than the delay of the typical order-4 gamma-

tone-family filters. The PZFC has the property that as the

cascaded segments are more finely divided, the overall shape

and delay can be kept fixed by letting the zeros move closer

to the poles, whereas all-pole cascades will generally have

too much delay as they move to higher orders.

VI. CONCLUSION

Modeling cochlear wave propagation as a filter cascade

has given rise to the PZFC filter model, which provides bet-

ter fits to human masked-threshold data than any other

known auditory filter models. The model is easily modified

to have approximately level-independent zero-crossing times

as seen in auditory nerve physiology. These two good fits do

not appear to be achieved simultaneously, as they require

different treatment of the positions of the zeros in the cas-

caded filter stages, but the generalization experiments sug-

gest that the PZFC5 with stable zero crossings is at least an

excellent compromise.

The PZFC leads to the CAR-FAC time-domain imple-

mentation that can incorporate both dynamic level depend-

ence and instantaneous nonlinearities. The connection of the

cascade architecture to the traveling-wave nature of the

cochlea gives the CAR-FAC at least the potential to model

cochlear nonlinearities fairly accurately.

If for no other reason than its computational efficiency

(only second-order per channel) the PZFC/CAR-FAC is the

architecture of choice for processing sounds in machine-

hearing applications. But since it also provides excellent fits,

with few parameters, to human psychophysical data, and

also connects well with cochlear hydromechanics including

nonlinear level-dependent phenomena such as dynamic am-

plitude compression, zero-crossing stability, and cubic dis-

tortion tones, it is a model that may be useful in forming

bridges between the various facets of hearing research.
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