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1 INTRODUCTION

 

The human auditory system has an amazing ability to separate and understand sounds. We
believe that temporal information plays a key role in this ability, more important than the
spectral information that is traditionally emphasized in hearing science. In many hearing
tasks, such as describing or classifying single sound sources, the underlying mathematical
equivalence makes the temporal versus spectral argument moot. We show how the nonlinear-
ity of the auditory system breaks this equivalence, and is especially important in analyzing
complex sounds from multiple sources of different characteristics.

The auditory system is inherently nonlinear. In a linear system, the component frequen-
cies of a signal are unchanged, and it is easy to characterize the amplitude and phase changes
caused by the system. The cochlea and the neural processing that follow are more interesting.
The bandwidth of a cochlear “filter” changes at different sound levels, and neurons change
their sensitivity as they adapt to sounds. Inner Hair Cells (IHC) produce nonlinear rectified
versions of the sound, generating new frequencies such as envelope components. All of these
changes make it difficult to describe auditory perception in terms of the spectrum or Fourier
transform of a sound.

One characteristic of an auditory signal that is undisturbed by most nonlinear transforma-
tions is the periodicity information in the signal. Even if the bandwidth, amplitude, and phase
characteristics of a signal are changing, the repetitive characteristics do not. In addition, it is
very unlikely that a periodic signal could come from more than one source. Thus the auditory
system can safely assume that sound fragments with a consistent periodicity can be combined
and assigned to a single source. Consider, for example, a sound formed by opening and clos-
ing the glottis four times and filtering the resulting puffs of air with the vocal resonances. Af-
ter nonlinear processing the lower auditory nervous system will still detect four similar events
which will be heard and integrated as coming from a voice.

The duplex theory of pitch perception, proposed by Licklider in 1951 [11] as a unifying
model of pitch perception, is even more useful as a model for the extraction and representa-
tion of temporal structure for both periodic and non-periodic signals. This theory produces a
movie-like image of sound which is called a correlogram. We believe that the correlogram,
like other representations that summarize the temporal information in a signal, is an important
tool for understanding the auditory system.

The correlogram represents sound as a three dimensional function of time, frequency, and
periodicity. A cochlear model serves to transform a one dimensional acoustic pressure into a
two dimensional map of neural firing rate as a function of time and place along the cochlea.
A third dimension is added to the representation by measuring the periodicities in the output
from the cochlear model. These three dimensions are shown in Fig. 1. While most of our own
work has concentrated on the correlogram, the important message in this chapter is that time
and periodicity cues should be an important part of an auditory representation.

This chapter describes two cochlear models and explores a structure which we believe can
be used to represent and interpret the temporal information in an acoustic signal. Section 2 of
this chapter describes two nonlinear models of the cochlea we use in our work. These two
models differ in their computational approach and are used to illustrate the robustness of the
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temporal information in the output of the cochlea. Over the past forty years there have been
several ways to summarize this information at the output of the cochlea [11] [22] [36]. Since
these representations produce such similar pictures we describe them all with the term correl-
ogram. Correlograms, their computation and implementation, are the subject of Section 3 of
this chapter. Finally, Section 4 describes the use of correlograms for sound visualization,
pitch extraction, and sound separation.

 

2 NONLINEAR COCHLEAR MODELS

 

Two different computational models of the cochlea are described in this work: the older
model [12][30], which we refer to as the “passive long-wave model,” and the newer model
[14], which we refer to as the “active short-wave model.” The two models differ in their un-
derlying assumptions, approximations, and implementation structures, but they share three
primary characteristics (not necessarily implemented independently or in this order):

• Filtering: A broadly tuned cascade of lowpass filters models the propagation of
energy as waves on the Basilar Membrane (BM).

• Detection: A detection nonlinearity converts BM velocity into a representation
of inner haircell (IHC) receptor potential or auditory nerve (AN) firing rate.

• Compression: An automatic gain control (AGC) continuously adapts the oper-
ating point of the system in response to its level of activity, to compress widely
varying sound input levels into a limited dynamic range of BM motion, IHC
receptor potential, and AN firing rate.

The several differences between the models are largely independent of each other, so
there is a large space of possible models in this family. The main differences between the two
models we have experimented with are:

• The passive long-wave model is based on a popular one-dimensional (long-
wave) hydrodynamic approximation with a lightly-damped resonant mem-
brane [37]; the active short-wave model is based on a two-dimensional hydro-
dynamic approximation (emphasizing the short-wave region) with active
undamping and negligible membrane mass [15].

• Our passive long-wave model is implemented with complex poles and zeros,
while the filters in the active short-wave model have only complex poles.
These decisions are based on rational filter approximations to the different un-
derlying hydrodynamic simplifications.

Fig. 1– Three stages of auditory processing are 
shown here. Sound enters the cochlea 
and is transduced into what we call a 
cochleagram (middle picture). A 
correlogram is then computed from the 
output of the cochlea by computing short 
time autocorrelations of each cochlear 
channel. One frame of the resulting 
movie is shown in the bottom box. 
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• The passive long-wave model uses time-invariant linear filters followed by a
variable gain to functionally model the AGC. The active short-wave model
varies the filter pole Q over time to effect a gain variation and to model the me-
chanical AGC in terms of active adaptive hydrodynamics.

Both models are motivated by the desire to compute a representation of sound that is ap-
proximately equivalent to the instantaneous firing rates of AN fibers. By assembling the fir-
ing rates versus time for a large number of fibers with different best frequencies (BF), we
construct a picture called the “cochleagram.” The cochleagram is useful as a visual represen-
tation of sound, and as a numerical input to other sound processing functions, such as auto-
matic speech recognition.

The cochleagram has a wealth of fine time structure or “waveform synchrony” driven by
the temporal structure of the incoming sound. The extraction and representation of the impor-
tant perceptual information carried in the temporal structure on the AN is the main topic ex-
plored in this chapter. Nevertheless, for the display of cochleagrams, we often just smooth
away the details via a lowpass filter, in order to reduce the bandwidth enough to fit a signal
of some duration (e.g., a sentence) into the resolution of the display medium. These “mean-
rate” cochleagrams would be rather flat looking if they really represented mean AN firing
rates. Instead, we follow Shamma [29] in using a first-order spatial difference (a simple Lat-
eral Inhibitory Network or LIN) to sharpen the cochleagram response peaks due to spectral
peaks.

 

2.1 Modeling approach

 

Sound waves enter the cochlea at the oval window, causing waves to travel from the base
to the apex along the BM. The speed at which waves propagate and decay is a function of the
mechanical properties of the membrane and the fluid, and of the wave frequency. The most
important property that changes along the BM is its stiffness. As a wave of any particular fre-
quency propagates along the BM from the stiff basal region toward the flexible apical region,
its propagation velocity and wavelength decrease, while its amplitude increases to a maxi-
mum and then rapidly decreases due to mechanical losses. The amplitude increase is due to
the energy per cycle being concentrated into a smaller region as the wavelength decreases,
and, in the case of an active model, to energy amplification in the traveling wave.

For both one-dimensional and two-dimensional hydrodynamic models, a technique
known as the WKB approximation allows us to describe the propagation of waves on the BM
one-dimensionally, using a local complex-valued “wavenumber.” The wavenumber  (the
reciprocal of Zweig's  parameter [37]) may be thought of as a reciprocal wavelength in
natural units, or a spatial rate of change of phase in radians/meter. But, it can also have an
imaginary part that expresses the spatial rate of gain or loss of amplitude.

In general,  depends on frequency ( ) and on the parameters of the wave propagation
medium (for example, stiffness, mass, damping, height, width). We allow parameters of the
medium to depend on , the distance along the BM measured from the base. Thus the wave-
number is expressed as a function of frequency and :  . The equation that describes
the wave medium and lets us find  from the frequency and the parameters at location  is
known as the dispersion relation, and may be derived from some approximation to the hydro-
dynamic system. The popular long-wave approximation [38] is simplest, but is only valid
when the wavelength is very long compared to the height of the fluid chambers of the cochlea.
A better approximation to physical (or at least mathematical) reality results from a 2D or 3D
model of the hydrodynamics [25][33]. Different models lead to different solutions for

 [37].
The WKB approximation says, roughly, that we can describe wave propagation along the

 dimension by integrating the rate of change of phase and relative amplitude indicated by .
In a uniform medium, a (complex) wave traversing a distance  is multiplied by

 . (1)

k
λ–

k ω

x
x k ω x,( )

k x

k ω x,( )

x k
dx
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According to WKB, in a nonuniform medium, as a wave traverses a region from  to , it
is multiplied by 

. (2)

The WKB approximation includes an amplitude correction factor as well. This factor de-
pends on whether the wave being propagated represents pressure or displacement and insures
the wave amplitude correctly accounts for energy as the wavelength changes. In the short-
wave region, under an assumption of constant BM mass and width, no amplitude correction
is needed for the pressure wave. On the other hand, an amplitude increase proportional to 

 

k

 

is needed for the BM displacement or velocity wave. In the long-wave region, pressure am-
plitude decreases as , while displacement and velocity increase as . In the general 2D
case, and for more general mass and stiffness scaling, amplitude scaling is more complex
[15]. For our models, we choose ad hoc stage gains near unity that provide plausible correc-
tion factors and lead to good-looking results.

We model wave propagation using a cascade of filters by noting that the exponential of
an integral is well approximated by a product of exponentials of the form 

(3)
for a succession of short segments of length . We then only need to design a simple filter 

(4)

for each segment of the model corresponding to BM location . For short enough segments,
the filter responses will not be too far from unity gain and zero phase shift, and will them-
selves be well approximated by low-order causal rational transfer functions (i.e., by a few
poles and/or zeros).

The conversion of mechanical motion into neural firings is performed by the Inner Hair
Cells (IHC) and neurons of the auditory nerve (AN). IHCs only respond to motion in one di-
rection and their outputs saturate if the motion is too large. Thus a simple model of an IHC is
a Half Wave Rectifier (HWR), while more complicated models might use a soft saturating
HWR such as

. (5)

Even more realistic models of IHC and AN behavior take into account local adaptation, re-
fractory times, and limited firing rates [19]. Our work is more interested in the average firing
rate of a number of cells, thus we do not need this level of detail. Both cochlear models de-
scribed in this chapter use a simple HWR as a detector.

All IHC models share the important property of acting like detectors. This means that they
convert the pressure wave with both positive and negative values into a signal that retains
both the average energy in the signal and the temporal information describing when each
event occurs. Over a period of several cycles, the average pressure at a point on the BM will
be zero. But by first using a HWR, or other hair cell model, the average will be related to the
energy in the signal yet the fine time structure is preserved. This temporal information will
be important later when trying to group components of a sound based on their periodicities
[12].

Such a non-linearity is important part of understanding the perception of sounds with
identical spectra but different phase characteristics. One such set of sounds was studied by
Pierce [24]. In his study, carefully constructed sounds with identical spectra but different
phases were shown to have different pitches. A simple HWR dectector is sufficient to turn
the phase differences into envelopes whose periodicities explain the different pitches.

Finally, a model of adaptation, or Automatic Gain Control (AGC), is necessary. In its sim-
plest form, the response to a constant stimulus will at first be large and then as the auditory

x1 x2

Exp i k ω x,( ) dx
x2

x2

∫

k 1 2/– k3 2/

eik ω x,( ) dx

dx
Hi ω x,( ) eik ω xi,( ) dx=
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1
2
--- 1 x a+( )tanh+( )
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system adapts to the stimulus the response will get smaller. There are many types of adapta-
tion in the auditory system that respond over a large range of time scales. Some of these ad-
aptations affect the mechanical properties of the BM and thus change the wave propagation
equation.

The interaction of sound levels and wave mechanics is clear in the iso-intensity mechan-
ical response data of Rhode [27], Johnstone [10], and Ruggero [28]. Typical data are shown
in Fig. 2. In all cases, the peak of resonant response is blunted at high sound levels, resulting
in an increased bandwidth, a shift in best frequency, and a reduced gain for frequencies near
the characteristic frequency (CF). These effects are qualitatively in agreement with the result
due to reducing the pole Q in our active short-wave model. Our passive long-wave model, on
the other hand, keeps the mechanics constant and applies a pure gain variation before the
IHC. Models that rely on the place of maximum response can not realistically count on the
cochlea to map a consistent frequency to a particular place. Using a Lateral Inhibition Net-
work to shift the response peak closer to the sharp cutoff edges gives a more consistent map-
ping. 

 

2.2 The Passive Long-Wave Model

 

Our passive long-wave model was designed by Lyon [12] based on a long-wave analysis
of the cochlea by Zweig [37]. The implementation of this model is described by Slaney [30].
This model uses a cascade of second-order sections to approximate the complex, frequency-
dependent delay and attenuation a wave encounters as it travels down the BM. This model
uses a HWR as a detector and four stages of a multiplicative AGC to model adaptation.

The transfer function for a stage of the model is based on an approximation to the long-
wave solution for a short section of the BM. The transfer function, or ratio of complex ouptut
amplitude to input amplitude, over a length 

 

dx

 

 of the BM is a function of frequency, , and
is written

(6)

where . When the wavenumber  is real-valued, the transfer function contributes
just a phase change and there is no change in amplitude. Negative imaginary values of 
cause the exponential’s mangnitude to be less than one and the wave to decay. The resulting

SPL Q3dB CF

80dB 1 10k

60dB 2.7 16k

40dB 4.8 17k

20dB 8.3 17k

Fig. 2– Mössbauer data shows the non-linearity of the cochlea. 
This data, measured by Johnstone, shows the motion of 
the BM at four different sound levels. Note that the 
response is most highly tuned at the lowest sound levels. 
Adapted from [10] with permission.
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transfer function, as a function of sound frequency, for a small section of the cochlea with
 near 5.8 kHz is shown in Fig. 3. 

The parameters  and  are local parameters for each small section of BM being mod-

eled in the cascade. The resonance frequency, , changes exponentially from  kHz at
the base of the cochlea to approximately  Hz at the apex. The transfer function in Equa-
tion (6) is a notch filter, and when the response is combined from the base to any point along
the BM the result is a Low Pass Filter (LPF).

Equation (6) describes the transfer function for a pressure wave traversing a section of
length 

 

dx

 

. Pressure is converted to BM velocity by the local BM impedance, which is essen-
tially a simple resonator described by the same  and . We approximate the transfer func-
tion and the accompanying resonator using a biquadratic filter (two poles and two zeros). The
resulting structure is computationally efficient and an adequate model of the cochlea for our
purposes. This structure is shown in Fig. 4. 

The bandwidth and center frequency of the notch varies as a function of the characteristic
frequency corresponding to each position along the BM. The bandwidth of the poles is given
by the expression

ωR
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Fig. 3- The frequency response of a small section of a 
long wave model of the BM is compared to an 
approximation based on a second order filter. 
A large number of these sections are 
combined to form the overall lowpass filter 
characteristic of the cochlea.Long Wave
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Fig. 4– A single stage of the cascade-parallel model is implemented with the second-order section shown 
on the left. The frequency response for one typical stage is shown in Fig. 3. The BM is simulated 
by combining stages into a cascade. The typical response, including a differentiator to convert to 
velocity, is shown on the right.
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(7)

and corresponds roughly to a critical band. Model parameters  and  specify the high-
frequency limit of the pole Q, and the frequency that separates the nearly constant-Q and con-
stant bandwidth regions. Filter stages are cascaded, with center frequencies from high to low,
so that the center frequency of each stage falls a small fraction of the bandwidth below the
center frequency of the previous stage.

The filter  and the percentage of filter overlap are parameters of our long-wave model;
no one value is correct for all situations. Instead, depending on the use, we often choose one
of two values. If we are computing a cochleagram then we use a  of 8, which yields un-
realistically sharp filters but produces a picture with good frequency-domain resolution. If in-
stead we are looking at the periodicities of the signal by computing a correlogram, we can use
a more realistic bandwidth and a  of 4. To keep the same number of channels per octave,
we step the narrow filters by a factor of 25% of 

 
BW

 
 and the wide filters by 12.5% of 

 
BW

 (overlap 75% and 87.5% respectively).
An important step in a cochlear simulation is a model of adaptation. In our passive cochle-

ar model this function is performed by time varying gains in an AGC loop. To simulate ad-
aptation the AGC is operating at a point where it is sensitive to new sounds. After an
increased sound loudness is detected, the gain is turned down. The structure of this multipli-
cative AGC is shown in Fig. 5. Four of these stages, each with a different time constant, are
used to model the range of adaptation rates found in the auditory system. 

While the passive long-wave model does a reasonably good job of calculating a cochle-
agram, it differs from the physiology in two areas. Most importantly, there is evidence that
an active mechanical mechanism is part of the cochlea and serves not only to amplify low-
level traveling waves but also to sharpen the iso-response mechanical tuning curves. Incor-
porating the AGC into the mechanical properties of the cochlea tends to compress the range
of signal levels that need to be represented by neural circuits. This point is minor for high-
precision floating-point computer implementations but is critical for the representation and
for neurons, which have a limited dynamic range.

 

2.3 The Active Short-Wave Model

 

The second model we use in our work is based on two-dimensional hydrodynamics and
includes negative damping to model the mechanical amplification of low-level signals by ac-
tive outer haircells. This approach has been described by Lyon and Mead [14] [15] in terms
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f break

2 CF2+
Qhi

-----------------------------------=

Qhi f break

Qhi

Qhi

Qhi

AGC Target Time Constant
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Fig. 5– The structure of the Automatic Gain Control 
(AGC) used in the cascade-parallel model of the 
cochlea. Four of these stages are combined, 
each with a different value for the time constant 
( ) and output target value (T), to make the 
complete adaptation model. In the passive long-
wave model of the cochlea, the AGC follows the 
detector, so only positive values are seen.
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of analog circuits. We have implemented their approach digitally, and extended it to include
a coupled AGC loop that adapts the filters.

Though the model is based on a full two-dimensional analysis, we characterize it as a
short-wave model to emphasize the importance of the short wavelength near the response
peak, and to clearly contrast it with our long-wave model. Because of the short-wave behavior
and the form of the active undamping and higher-order loss mechanisms we have used, it is
possible to get a reasonably sharp response peak even with no BM mass [15]. This massless
approach is not possible in a passive long-wave model. Finding a more realistic version of
this class of model requires more data on BM mechanics and OHC micromechanics.

Like the passive long-wave model, our active short-wave model is built with a cascade of
second-order filter sections that model pressure wave propagation. But in the short-wave
model, the filter stages adapt in response to the sound level by lowering their pole Q when
the local wave energy is high. The filters have unity gain at DC, for lossless propagation of
low-frequency waves. When the pole Q is greater than 0.707 (the usual case), each filter has
a frequency range over which its gain is greater than unity, implying active amplification.
With quiet sounds, the Q values for each stage can be as high as 2. This results in gain peaks
for the cascade near  (60 dB), depending on parameters such as the filter overlap and step
factor. Adjusting the Q values between 0.707 and 2 can change the overall filter cascade's
peak gains by about 60 dB in response to sound levels over a 100 dB range.

The active cochlea has negative damping. This corresponds to a positive imaginary part
of the wavenumber 

 

k

 

 and causes energy to be added to propagating waves. A wave of a par-
ticular frequency would grow without bound if the damping did not become positive at some
place as the wave propagated. The curve of gain versus place for a particular frequency is also
reflected in the curve of gain versus frequency at a particular place. Each filter stage needs to
have a gain greater than unity followed by a falloff toward zero; a pair of poles is the simplest
way to approximate this shape qualitatively.

In simple dynamic systems, damping is used to quantify the rate at which energy is dissi-
pated over time. Negative damping in a dynamic system, or in a simple second-order filter,
results in an instability. But with a propagating wave, damping quantifies the rate of energy
dissipation per distance. Negative damping in a uniform medium would be unstable, but in a
cochlea with changing parameters, each region can have negative damping for a range of fre-
quencies, and positive damping for higher frequencies, with no instability. The negative
damping of a section of the wave medium is captured via the WKB approximation as a gain
greater than unity.

In the cochlea, there must be a physical limit to the amount of energy that can be added
to a wave by active outer haircells. Therefore, at high sound levels the system must become
passive, corresponding to reducing all the Q values to 0.707 or less in our model. Changing
the Q values between the small-signal and large-signal limits results in an overall compres-
sive behavior, in agreement with compression seen in the actual cochlear mechanics [16].

In the cochlea, the level of OHC activity is probably controlled both by a fast local non-
linearity and by a slower feedback loop involving the cochlear efferents and the olivary com-
plex. The degree of feedback and activity is not the same at all places, but is dependent on the
signal spectrum. We model this control loop using a set of parallel time-space smoothing fil-
ters similar to those used in the coupled AGC of our long-wave model. Following the IHC
detection nonlinearity, four filters with different time constants and space constants add their
outputs. This sum is added to a minimum damping parameter to compute a filter stage's pole
damping. The wide range of possible loop characteristics, nonlinearities, and binaural effects
that no doubt occur in the olivary complex have not been explored, but this ad hoc AGC gives
good compression and qualitatively correct shifts in CF, bandwidth, and phase. Due to the
spatial coupling and the fact that cascaded stages interact, there is also a qualitatively reason-
able two-tone suppression effect, as there was in the long-wave model [13]. The structure of
this active and adaptive model is shown in Fig. 6.

The digital implementation of the active short-wave model uses a novel second-order fil-
ter structure, shown in Fig. 7, in which one coefficient directly controls the pole damping, or
1/Q [35]. This allows us to connect the output of the AGC loop filters to the cascaded filter
stages, without a block to convert pole CF and Q to filter coefficients. The CF parameter di-

210
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rectly controls the pole frequency, and is a design parameter that is held constant for each
stage. The separation of frequency and damping is exact only in the limit of low pole frequen-
cies, and is usable with care up to only about half of the Nyquist frequency. Thus the high-
frequency end of the short-wave model is not as high as it is for the long-wave model, for a
given sound sample rate. 

 

2.4 Pictures

 

A time-frequency representation is often used to analyze and display speech signals. Four
representations

 

 

 

of the utterance “Fred can go, Susan can’t go, and Linda is uncertain” from
the ESCA Sheffield Workshop are shown in Fig. 8 and Fig. 9. Fig. 8 shows the conventional
wide and narrow band spectrograms using the short-time Fourier Transform. These two spec-
trograms use two different window sizes and thus differ in their resolution in the time and fre-
quency domains. 

Fig. 9 shows two cochleagrams of the same utterance. The cochleagram, much like the
spectrogram, is a function of time along the horizontal axis and cochlear place, or frequency,
along the vertical axis. The darkness of the picture at each point represents the LIN enhanced
average of the auditory nerve firing rate at each position along the BM. The spectrograms and
cochleagrams show a remarkable similarity. The most noticeable differences in the pictures
are the change in the scaling of the frequency axis and some enhancement of the onsets in the
cochleagrams. 

A more important difference can not be seen in these pictures. Because of the limited
space on the printed page, each pixel in these cochleagrams represents the average cochlear
firing rate over a period of approximately 5 ms. But the cochlea and the IHCs are exquisitely

Fig. 6– A more realistic model of the cochlea uses energy detectors that control the parameters of the 
cochlear filters. The AGC filters integrate the energy over time and space and control the 
damping of the BM filters.

FilterFilterFilter
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AGC FilterAGC FilterAGC Filter

Fig. 7- This structure is used to implement a single stage of our model of the hydrodynamics of the 
cochlea. Unlike the structure shown in Fig. 4, the center frequency and the filter damping, or 1/Q, 
can be controlled directly.
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sensitive to the time structure of each component of the sound. Fig. 10

 

 

 

shows an expanded
view of the dipthong “rea” from the word greasy. At this time scale each glottal pulse and each
waveform peak is visible. One can still follow the formant tracks, but in addition the glottal
pulses that trigger the formant information allow one to group frequency channels that come
from the same source. 

We argue that this temporal information is important. Conventional models of audition
base all performance on a suitably narrow resolution in the frequency domain. We feel this is

Fig. 8- Narrow (top) and wide-band (bottom) spectrograms of the Sheffield ‘clean.wav’ utterance, “Fred 
can go, Susan can’t go, and Linda is uncertain.” These spectrograms were computed with the 
Signalyze program for the Macintosh using bandwidths of 20 and 200Hz, respectively. 
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unrealistic since the bandwidth and center frequency of the mechanical system change with
level. Instead, if the auditory system is based on the temporal information in the signal then
the performance of the system is relatively insensitive to each filter’s bandwidth and center
frequency. The correlogram is one way to capture the temporal structure in the cochlear out-
put and is the subject of the remainder of this chapter.

Fig. 9 - Passive long-wave (top) and active short-wave (bottom) cochleagrams of the Sheffield 
‘clean.wav’ utterance. The passive long-wave cochleagram was computed using the default 
MacEar parameters and “df=100 tau=1”. The active short-wave cochleagram was computed 
using “df=100 tau=1 gain=.001”.
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3 REPRESENTING TIME—THE CORRELOGRAM

 

We use the correlogram to summarize the temporal information in the sounds we hear.
This chapter argues that the correlogram is biologically plausible and serves as a representa-
tion that higher level processes can use to form auditory objects. The cochlea separates a
sound into rather broad frequency channels yet retains the timing of the original sound. How
is it that the brain extracts this information from the acoustic signal and uses it to group
sounds?

The first step is to gather evidence of events that repeat. There are many ways to do this
and in this section we will describe a range of techniques from those that are biologically
plausible to those that can be efficiently implemented on a digital computer. We use the term
correlogram, literally “picture of correlations,” to describe the resulting sequence of images.
While other researchers have described different implementations, we believe that each of
these representations have the same goal: to represent the time structure of a signal.

In its ideal form, a correlogram is computed by measuring the short-time autocorrelation
of the neural firing rate as a function of cochlear place, or best frequency, versus time. Since
an autocorrelation is itself a function of a third variable, the resulting correlogram is a three-
dimensional function of frequency, time, and autocorrelation delay. For display, we assemble
a frame of data, all autocorrelations ending at one time, into a movie which is synchronized
with the sound. 

An idealized structure to compute the correlogram is shown in Fig. 11. Sound enters the
correlogram array from the cochlea, a picture is computed, and is then sent to higher level
structures in the brain. 

We can’t show a correlogram on paper but we can show individual frames and talk about
the significant features. More examples are available in a video report we have published
[31]. Fig. 12 shows several correlograms and illustrates how the correlogram changes as the

Fig. 10- Expanded cochleagram of the dipthong “rea” in greasy from the Sheffield ‘timit.dip’ utterance. 
The first three formant tracks are shown (the lowest formant is excited with two harmonics). The 
vertical lines, each of which represents a glottal pulse, are tilted slightly due to the natural delay 
through the cochlea.
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pitch and formant frequencies of the sound change. Distance along the BM is shown on the
vertical axis of a correlogram. Since each section of the BM is most sensitive to a single fre-
quency the vertical axis of a correlogram roughly corresponds to frequency, with the base of
the cochlea, or the part that is most sensitive to high frequencies, at the top and the apex, or
the low frequency portion, at the bottom. 

Autocorrelation time delay, or lag, is shown on the horizontal axis of a correlogram. The
width of a correlogram is chosen to include time delays long enough to include the lowest
expected pitch. Generally this is at least 10ms.

The activitiy of the correlogram is displayed as darkness in the image. As in a convention-
al spectrogram, dark areas represent autocorrelation lags and cochlear frequencies where
there is a large response.

Voiced sounds, as shown in Fig. 12a-c, best show the utility of the the correlogram. Strong
vertical lines at particular autocorrelation lags indicate times when a large number of cochlear
channels are firing with the same period. This is a strong indication of a pitch which has a
frequency inversely related to the autocorrelation lag. When the pitch increases, as shown be-
tween Fig. 12a and b the dominant line moves to the left, to a lag equal to the reduced period.

Horizontal bands are indications of large amounts of energy within a frequency band. The
correlogram frames shown in Fig. 12a and c illustrate how the correlogram changes as the

Fig. 11– This structure can be used to 
measure the temporal 
information in a sound. Sound 
enters the cochlea on the 
bottom right and is analyzed 
into broad frequency channels. 
Each channel is then 
correlated with itself and the 
resulting picture is passed to 
higher structures in the brain 
for further processing.

Time
Lag

Frequency

Sound
InputCochlea

Fig. 12- Four frames of a correlogram of a 
voice. The first three frames are 
voiced sounds. When the pitch is 
raised the vertical structures 
become closer together (first and 
second frame). As the formant 
frequencies change the horizontal 
bands move (first and third frame). 
Finally, if the sound is unvoiced 
(last frame) then there is no 
vertical structure.

/a/ with 107 Hz
Pitch

/a/ with 165 Hz
Pitch

/i/ with 107 Hz
Pitch

/s/ with no
Pitch

=9.34 ms or
pitch of 107Hz
τ=6.06 ms or
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vowel /a/ is changed to /i/. Note that the first formant drops while the second and third for-
mants move much higher. Finally, only voiced sounds have a pitch. Unvoiced sounds, like
the letter /s/, do not contain any periodic information and thus the correlogram is uniformly
black for all BM channels that contain energy. This is shown in Fig. 12d.

An autocorrelation of  is defined by the following integral

 . (8)

For dynamic signals, we are interested in the periodicities in the signal within a short window
ending at time t. This short-time autocorrelation can be written

(9)

where is an arbitrary causal window which limits the autocorrelation to a neighborhood
of the current time. As indicated by the convolution form above, one way to calculate such a
running autocorrelation is to filter the instantaneous correlation through a smoothing filter
whose impulse response is a window [11].

A slightly different definition is useful on a digital computer. By windowing the data first,
we can implement the correlation using an FFT algorithm and reduce the computations by an
order of magnitude or more. Now assume

(10)
and form a windowed signal ending at a particular time t:

. (11)
The windowed autocorrelation can now be written

(12)

where  and  indicate the forward and the reverse Fourier Transform. This equation can
be rewritten to make it more like Equation (9)

. (13)

The correlogram is also a function of BM position or frequency. Using Equation (9), we
can write the following equation for the correlogram as a function of the cochlear firing rate

at the position along the BM most sensitive to a sinusoid of frequency f. The most gen-
eral form of the correlogram is written

. (14)

Autocorrelations are often normalized so that the value for zero lag is equal to one. Such
normalization reduces the dynamic range required for display, but completely eliminates any
indication of the relative power in different frequency channels. Since autocorrelation dou-
bles the dynamic range required to represent varying signal levels, we partially normalize by
the square root of the power. This serves as a compromise so that a correlogram can be dis-
played with a dynamic range comparable to the cochleagram. This is written

x t( )

Rxx τ( ) x t( ) x t τ–( ) dt
∞–

∞

∫=

Rxx τ t,( ) x t s–( ) x t s– τ–( ) w s( ) ds
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. (15)

Since the autocorrelation of a non-negative function is also non-negative, the resulting
normalized correlogram will have values between 0 and a maximum value that we scale for
the display technology. 

The correlogram as described above is a continuous function of time, frequency, and au-
tocorrelation lag. We have already sampled the auditory input as a function of time and the
BM as a function of place or frequency. Sampling the auditory input means that only discrete
time lags are possible in the autocorrelation without interpolating to a higher sample rate.

Still, the value of the correlogram at any one frequency and lag changes at every sample
time. There is no way to display 16000 or more correlogram frames per second, so instead we
subsample the correlogram to a more manageable rate of 10 to 30 frames per second. Thus to
prevent temporal aliasing it is necessary to lowpass filter the correlogram. The easiest way to
accomplish this filtering is to choose the correlogram window so that it is an appropriate low-
pass filter. Without much biological evidence to base a window length on, we instead choose
a Hamming window twice as long as the frame sampling interval. This serves to average the
correlogram over a long enough interval to prevent aliasing.

There are many ways to measure periodicites and implement a correlogram. The correlo-
grams in this chapter were computed on a digital computer using an FFT to efficiently imple-
ment the correlation operation. But there is little reason to think that neurons would use an
FFT. Instead a direct solution, like that shown in Fig. 13 is more plausible. In this implemen-
tation a neural delay line, perhaps using a combination of axonal delays and neural resonators,
delays a copy of the signal. For each time delay, a neuron fires when both the delayed and
undelayed inputs are active at nearly the same time. A second neuron then sums the number
of coincidences and remembers them over a small window in time. This second neuron can
be called a leaky integrator or lowpass filter. Structures similar to the correlator shown in Fig.
13 have been found in the owl [5] for doing binaural cross-correlation and in the bat [34] for
echo location.

While the correlogram was first proposed in 1951, only recently has it become feasible to
explore the use of the correlogram with multiple seconds of sound. Using an FFT on a Cray
YMP supercomputer we can compute one second of a correlogram with about a second of
CPU time. The same calculation takes about a half hour on a small personal computer.

An even more efficient implementation is possible using analog silicon VLSI as described
by Lyon [17]. Using low-power sub-threshold CMOS transistors, the chip computes a real-
time video correlogram from a microphone input. This implementation combines a cascade
of analog filters, simulating the cochlear transmission line, with an array of Charge-Coupled
Device (CCD) delay lines. At each position in the correlogram array (frequency versus lag)
there are four CCD gates, a transistor multiplier, a capacitor to sum the current output, and

Ĉ f τ t,( )
C f τ t,( )

C f 0 t,( ) 1 2/----------------------------=

Integrators

Multipliers

Delay Lines

NL

NL

Fig. 13- This simple structure, first proposed by Licklider in 1951, can be used by the brain to calculate 
a correlogram. For each time lag, delayed (bottom line) and undelayed versions of the auditory 
signal are multiplied together and integrated. The two boxes labeled “NL” are optional non-linear 
processing steps.
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video scan-out circuitry. A separate gate array generates the video timing and addresses the
correlogram pixels in the proper order. The two chips produce a recognizable correlogram,
not as precise as the digital versions, but which can be computed using a single 9 volt radio
battery for power.

There are many ways to compute variations of a correlogram. One way to describe these
implementations is shown in Fig. 13. This is a generalization of the basic correlator described
above and includes two optional non-linearities that modify the neural input. In a method pro-
posed by Patterson [23], only the non-linearity in the undelayed signal path is present. This
non-linearity is an adaptive peak picker and produces a binary output when it sees a major
peak. As each peak occurs the delayed input signal is transferred to the leaky integrators. An
approach first described by Weintraub [36] uses identical non-linearities in each path. Each
non-linearity replaces the original waveform with an impulse train that represents the location
of each peak in the waveform. In addition, the impulses of the signal are scaled by the energy
in the original peak. In both cases, the large amounts of data that are combined to form a sin-
gle frame of a correlogram help to average out the noise caused by these approximations.

Another technique which might be used to generate a correlogram is to model chopper
cells in the Cochlea Nucleus [8] and to count their output spikes. Chopper cells prefer to fire
at a fixed rate and tend to lock to sound periodicities. It is easy to imagine that these cells
could be used to measure the periodicities in an auditory signal. We have not yet tried to gen-
erate a correlogram using this approach.

 

4 APPLICATIONS

 
Let us review our progress to date. We believe we have a good understanding of how to

make a cochlear model. The models we describe here are a severe simplification of the com-
plex behaviour of the cochlea, designed to preserve the aspect most relavent to auditory pro-
cessing. This we believe is the temporal information in the signal. While there are many
details that remain to be worked out, one can now choose any number of models that can be
used to model various aspects of the cochlea. 

One aspect that is clear, at least to us from our review of cochlear mechanics, is that the
tuning curves can not be sharp enough to account for all the exquisite properties of the human
auditory system. But yet the system is quite good at preserving the temporal information in
the signal. Even above 3khz, where phase locking to high frequencies is lost, auditory nerves
preserve the envelope and thus the timing of the glottal pulses. The correlogram is one way
to capture this temporal information.

Given a temporal representation of sound one certainly wonders what it is good for. This
section describes the use of the correlogram as a tool for visualization, a model of pitch per-
ception, and our efforts to perform sound separation using this representation.

 

4.1 Sound Visualization

 

The most striking property of a correlogram movie is that the visual and acoustic experi-
ences are so similar. It is intuitively appealing to be able to see sounds in much the same way
that we hear them. It is, of course, hard to share this kind of experience in a book, but we can
illustrate some of the things we have seen.

A simple example is provided by “Strike Note of a Chime,” Demonstration Number 24
from the Acoustical Society of America’s 

 

Auditory Demonstrations

 

 CD [9]. Bells are inter-
esting because they are inharmonic, with several different mechanical modes. Each mode cor-
responds to a resonance at a different frequency and the inharmomic relationship between
these resonances accounts for the rich sound associated with a bell.

Fig. 14 shows several frames of a correlogram of a bell. At first, there are many harmonics
and the sound is quite rich. Different overtones decay at different rates as is seen in the second
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and third frames. Finally after two seconds, or the last frame, there are only two (inharmonic)
components left. 

 

4.2 Pitch

 

Pitch is an obvious quantity to measure with a correlogram. Licklider originally proposed
the correlogram as a pitch model and only recently has it been studied and compared to hu-
man performance [20][21][32]. The results closely match the published literature for all ex-
periments except those based on loudness changes.

Pitch is measured from a correlogram as shown in Fig. 15. After the correlogram is com-
puted, evidence for a pitch at each lag is found by summing across channels. The resulting
function is called a summary correlogram. It measures how likely a pitch would be perceived
with the given time delay. Inverting this time delay gives the resulting pitch frequency.

It is important to realize that pitch is not a single valued function. Pitch is conventionally
defined as “that attribute of auditory sensation in terms of which sounds may be ordered on
a musical scale.” But, for many sounds any number of frequencies can be called the pitch.
Most engineering solutions reduce pitch to a single valued quantity, but the correlogram pitch
detector described in Fig. 15 estimates the likelihood that a pitch exists at the corresponding
time delay. If a single pitch estimate is desired then one solution is to choose the largest peak
and call this the pitch. 

Fig. 16 shows the processing involved in a pitch detector we have built [32].This pitch
detector adds two additional ad-hoc stages to improve the system’s performance with real-
world sounds. We have not found these stages to be necessary with synthetic sounds, but with
real sounds we have found they improve the performance of our pitch detector. Fortunately,
neither step is hard to implement with neural circuits. 

To compute a pitch, a correlogram of the sound is first non-linearly filtered to emphasize
the vertical structures in the correlogram. This is equivalent to biasing the pitch detector so
that it will emphasize sounds that are harmonic. The summary correlogram is computed, and
then a final stage of sub-harmonic processing is performed. In our pitch detector this is im-
plemented using the narrowed-autocorrelation idea proposed by Brown [3]. This type of pro-

Fig. 14- Correlogram of the Strike Note of a Chime. Five frames show the different decay rates of the 
resonating modes of an orchestral chime. This example is Demonstration 24 from the Auditory 
Demonstrations CD [9].

0.0 Seconds 0.2 Seconds 0.6 Seconds

1.0 Seconds 2.0 Seconds

Cochlear
Model

Auto-
Correlation

Find
Pitch
Lines

Pick
Peak

Spectral Spectral/Lag Pitch

Fig. 15- Human pitch perception can be modeled with this correlogram technique. After computing the 
correlogram, a summary correlogram is computed (third box) by summing the correlation across 
channels, or along vertical lines. The numbers in parenthesis show the typical amount of data at 
each time step.
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cessing is equivalent to the sub-harmonic analysis proposed by Hermes [7] and the pitch
spiral proposed by Patterson [22].

In our pitch detector, a single pitch value is independently chosen at each frame time (30
times a second). This pitch detector has no history so it is quite happy to choose a completely
different pitch at each frame. Humans do not work this way: instead we use the pitch at recent
times to help us to choose the most likely pitch in the future. The result is that if two pitches
are equally likely then this pitch detector will oscillate between the two possible choices. A
better choice would be to model the dynamics of pitch perception, perhaps based on the data
for pitch just noticable difference (JND) as a function of time interval [1].

Fig. 17 shows the pitch measured from a sound with an ambiguous pitch, the continuous
Shepard tones by Jean-Claude Risset from the ASA 

 

Auditory Demonstrations

 

 CD (Demon-
stration 27). In this example the pitch is heard to constantly fall. But analysis by correlogram
shows that at each frame a number of pitches are possible, each separated by an octave. Our

Fig. 16- Pitch of a vowel. Data processing steps in a correlogram pitch detector are illustrated here. After 
computing the summary or integrated correlogram, subharmonics are considered using the 
narrowed autocorrelation technique. Finally, if desired, the highest peak can be chosen and 
considered the pitch.
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pitch detector is happy to oscillate between likely pitches but humans tend to follow a single
pitch track, perhaps over many octaves. 

 

4.3 Sound Separation

 

Our ultimate goal with correlogram processing is to understand how humans separate the
sounds in our environments. Even with a monaural recording we are quite good at separating
out the vocals from an instrumental track, hearing a bird as a separate object outdoors, or even
listening to a single conversation in a noisy room.

There are many cues [2] that we use to group pieces of a sound into a whole auditory ob-
ject. Some of the cues we have studied are onsets, pitch, and common modulation. A good
example of the power of common modulation is the Reynolds-McAdams oboe [18][26]. In
this sound a single oboe sound was analyzed into its even and odd frequency harmonics. Then
the harmonics were put back together, but each set of harmonics was independently jittered.
At first, the harmonics are fixed and the sound is heard as the original oboe sound. After a
few seconds the vibrato is turned on and the two sets of harmonics are heard as separate ob-
jects. The odd harmonics sound like a clarinet since clarinets have most of their energy in the
odd harmonics. The even harmonics go up an octave in pitch and sound like a soprano.

Fig. 18 shows correlogram frames that represent this sound. Over time the movie shows
the even harmonics moving left and right. The odd harmonics are moving independently and
the original oboe sound splits into two sounds. The pitch tracks for the two sets of harmonics

Fig. 17- Pitch of the continuous Shepard tones. Note that the correlogram pitch detector described in 
this chapter does not enforce any frame-to-frame coherence. Thus it is equally likely to choose 
either pitch if the summary correlogram assigns the two periods similar magnitudes. 
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are shown in Fig. 19. At this time we do not know whether this grouping is based on detection
of the FM modulation or synchronous onset detection in the correlogram domain. 

More work needs to be done to build models of sound separation that take into account
the dynamics of the auditory system. The correlogram can quantify the short term periodici-
ties (less than 25 ms) in the signal but does not capture the information at longer time scales.
For example, a voiced signal can be thought of as a vocal tract signal modulated by the glottal
pulses. The correlogram does a good job of representing the amplitude modulation or pitch
of the voiced signal as activity in a spatial map. But modulations with even lower frequencies,
such as the 6 Hz tremelo of a human voice, are not explictly represented. Higher level models
of the auditory processing will need to represent these longer time scales in order to under-
stand the dynamics of real sounds.
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Fig. 18- Three frames illustrating the correlogram of the Reynolds-McAdams oboe. The left frame 
shows the correlogram of the combined sound (even+odd harmonics) when the sets are slightly 
inharmonic. Note that the right most pitch line (at arrow) is no longer straight. The middle frame 
shows the correlogram of just the odd harmonics, or the clarinet. The right frame shows the 
correlogram of the even harmonics, or soprano. When this soud is played for human listeners, 
the independent vibrato clearly causes the sound to split into two objects.

Oboe Clarinet Soprano

Fig. 19 - Pitch of the odd harmonics (clarinet, bottom) and even harmonics (soprano, top) are shown here 
as a function of time. At first, the harmonics are held fixed and the original oboe sound is heard. 
After three seconds the independent vibrato is turned on and the sound separates into a clarinet 
and a soprano.
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