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Abstract
We have implemented a pitch detector based on Licklider’s

“Duplex Theory” of pitch perception, and tested it on a variety of
stimuli from human perceptual tests.  We believe that this approach
accurately models how humans perceive pitch.  We show that it
correctly identifies the pitch of complex harmonic and inharmonic
stimuli, and that it is robust in the face of noise and phase changes.

This perceptual pitch detector combines a cochlear model with
a bank of autocorrelators.  By performing an independent auto-
correlation for each channel, the pitch detector is relatively in-
sensitive to phase changes across channels.  The information in the
correlogram is filtered, nonlinearly enhanced, and summed across
channels.  Peaks are identified and a pitch is then proposed that is
consistent with the peaks.

1. Introduction
This paper describes a pitch detector that mimics the human

perceptual system.  Traditional approaches base a pitch decision on
features of a relatively primitive representation such as the wave-
form or spectrum.  Our pitch detector uses an auditory model.
Unlike the simpler techniques, this perceptual technique works for
a wide range of pitch effects, and is robust against a wide range of
distortions.

The technique used was first proposed by Licklider [1] as a
model of pitch perception, but it has not been taken seriously as a
computational approach to pitch detection due to its high compu-
tational cost.

The representation used by the pitch detector, which corre-
sponds to the output of Licklider’s duplex theory, is the correlo-
gram.  This representation is unique in its richness, as it shows the
spectral content and time structure of a sound on independent axes
of an animated display.  A pitch detection algorithm analyzes the
information in the correlogram and chooses a single best pitch.

There are many signals, such as inharmonic tones or tones in
noise, that do not have a periodic time or frequency-domain
structure, yet humans can assign pitches to them. The perceptual
pitch detector can handle these difficult cases and is thus more
robust when dealing with the common cases.  We expect that future
systems will benefit by using this approach, or a cost-reduced
version.

There is still considerable freedom to devise algorithms to
reduce the rich correlogram representation to a pitch decision.  The
results we report are from a relatively simple algorithm, which
does not address many of the subtle issues involved in a pitch
tracker for use in a real system.  Our algorithm picks a pitch for each

frame of the correlogram, and does not address the decision of
whether there is a valid pitch (as in the voiced/unvoiced decision
in speech processing), nor does it attempt to enforce or utilize
frame-to-frame continuity of pitch.  Humans have complex strat-
egies for making such decisions, depending on the task. For
example in music, jumps in pitch define the melody, so continuity
should not be enforced.

More work is needed to tune this model to accurately predict
the pitch of inharmonic sounds.  The results so far are consistent
with the so-called “first effect”, but not with the more subtle
“second effect.”  Since the pitch consistent with the second effect
can be seen in the correlogram, we expect that fancier algorithms
can be devised to find it.

We know of only a few previous attempts to use Licklider’s
duplex theory as a pitch detection algorithm.  The theory was
originally published in 1951, but the computational cost of a
cochlear model and a bank of autocorrelators remained a deterrent
to its implementation until 1984, when Lyon [2] published the first
image of a correlogram frame and Weintraub [3] used a cost-
reduced “auto-coincidence” version as a pitch tracker for his two-
voice sound separation experiments.  More recently Lazzaro [4]
has described a silicon VLSI implementation using auto-coinci-
dence of action potentials, along with results of pitch experiments
similar to ours.  Lyon [5] has discussed issues in the VLSI
implementation of this class of model.

2. The Auditory Model
As shown in Figure 1, our model of human pitch perception has

three stages.  The inner ear or cochlea encodes the information in
the acoustic signal into a multi-channel representation that may be
thought of as instantaneous nerve firing probabilities.  The second
stage of processing produces a correlogram, a two-dimensional
image in which each row is the running short-time autocorrelation
of the corresponding cochlea channel.  Finally, a pitch detector
combines the information in all the channels of the correlogram to
decide on a single pitch.  Humans can perceive multiple pitches but
for the purposes of this paper we choose a “best” pitch.

Figure 1.  Three stages of neural processing are used in our
model of pitch perception.
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Figure 2.  Our cochlear model combines filtering, detec-
tion and automatic gain control.

is very similar to the cross-correlator structures that have been
found in the brains of owls [7] and cats [8] for spatial localization,
but the structures that could compute the correlogram for pitch
have yet to be found.  Perhaps the hardest feature of the cor-
relogram to neurophysiologically justify is the long time delay
needed (on the order of 10ms.)  Other schemes, for example, based
on mechanical delays in the cochlea, have been proposed to
implement a correlation [9].

An autocorrelation function requires twice as much dynamic
range as the input signal that it represents.  The required dynamic
range is reduced in our model by partially normalizing each
autocorrelation by the energy at that frequency.  If each autocorrela-
tion was normalized by its energy, the correlogram would not show
any variation as a function of frequency and formants would not be
seen.  Instead we normalize each correlation with the energy raised
to the 3/4 power.  This serves to reduce the dynamic range of the
correlogram to half the dynamic range of the input, but does not
hide the important features, such as formants.

The correlogram is similar to another scheme that has been
proposed to model auditory perception.  Patterson’s Pulse Ribbon
Model [10] delays the outputs of individual neurons and then
searches for common firings across cochlear channels.  The corre-
logram is more robust since it sums up the firings from multiple
channels and across time.  But more importantly, an autocor-
relation is only concerned with time differences so it effectively
zeros out the phase between channels.

4. A Pitch Detector
The correlogram clearly shows many aspects of auditory

perception.  A voiced sound will excite several parts of the cochlea
by different amounts.  Each frequency in the voice is modulated by
the vocal cords; the common periodicity across cochlear channels,
which is seen as a vertical structure in the correlogram, is an
indication of pitch.

Humans can easily perceive multiple pitches.  An excellent
example of this is described in McAdams’ thesis [11].  McAdams
separated the harmonics of an oboe into even and odd components,
and then created a new sound by adding independent vibrato to the
two sets of harmonics.  The resulting sound clearly has two
independent voices, separated in pitch by an octave.  An animated
correlogram of this “oboe” clearly shows two independently
moving “objects”; but separating multiple sounds and calculating
their pitches is not the subject of this paper.  Instead we will show
an algorithm that can choose a single “best” pitch to describe a
sound.

Our pitch detector consists of four steps.  A preprocessing step
modifies the correlogram to enhance the peaks.  The value at each
time lag in the enhanced correlogram is then summed across all
frequencies.  Peak locations at this stage give estimates of all the
possible periodicities in the correlogram.  The third step is to
combine evidence at the subharmonics of each pitch to make the
pitch estimate more robust.  Finally, the largest peak is picked,
being careful to avoid octave errors, and a numerical value of the
pitch is determined based on the location of the peak.  This
sequence of steps is shown in Figure 3 for the vowel /u/.

We use two stages of preprocessing.   First, the correlogram is
convolved with an operator that enhances vertical lines in the

We use a cochlear model designed by Lyon and described by
Slaney [6] to convert a sound waveform into a vector of numbers
that represent the information sent to the brain.  This system is
diagrammed in Figure 2.  It is important to remember that the
cochlear model used here does not try to accurately model the
internal structure of the ear but only to approximate the information
contained in the auditory nerve.  Other, more accurate models can
be substituted to get better results.

A cascade of second order filters is used to model the propaga-
tion of sound along the Basilar Membrane (BM.)  At each point
along the cochlea the BM responds best to a broad range of
frequencies and it is this movement that is sensed by the Inner Hair
Cells.  The “best” frequency of the cochlea varies smoothly from
high frequencies at the base to low frequencies at the apex.

Inner Hair Cells only respond to movement of the BM in one
direction.  This is simulated in the cochlear model with an array of
Half Wave Rectifiers (HWRs) that detect the output of each second
order filter.  The HWR nonlinearity serves to convert the motion of
the BM at each point along the cochlea into a signal that represents
both the envelope and fine time structure.

Finally, four stages of Automatic Gain Control (AGC) allow
the cochlear model to compress the dynamic range of the input to
a level that can be carried on the auditory nerve.  The multi-channel
coupled AGC used here simulates the ear’s adaptation to spectral
tilt as well as to loudness.

3. The Correlogram
The correlogram is an animated picture of the sound that shows

frequency content along the vertical axis and time structure along
the horizontal axis.  If a sound is periodic, the autocorrelation
functions for all cochlear channels will show a peak at the horizon-
tal position that corresponds to a correlation delay equal to the
period of repetition. This is generally equal to the perceived pitch
period.  Since the peaks in all channels, or rows of the image, occur
at the same delay, or horizontal position, they form a vertical line
in the image.  The duplex theory says that sounds with a perceived
pitch, even if they are not periodic, will produce a vertical structure
in the correlogram image at the delay equal to the perceptual pitch.
On the other hand, formants, or narrow resonances in the frequency
domain, are displayed as horizontal bands in the correlogram.

The correlogram is computed by finding the (short-time, win-
dowed) autocorrelation of the output of each cochlear frequency
channel.  The autocorrelator can be implemented with an FFT, as
was done in this study for efficiency reasons.  But it is more likely
that the brain computes it using a neural delay line.  This structure



correlogram.  One such operator is shown in Figure 4.  The second
stage enhances the correlogram by passing it through an expansive
non-linearity (half-wave rectification and squaring).  This serves to
enhance the peaks which are indicative of the periodicities in the
sound.  These preprocessing steps have been used in the examples
that follow.

The correlogram, C(τ,f), is integrated across channels to cal-
culate a one dimensional estimate of the pitches present in the
sound,

The pitch function, P(τ), is a function of autocorrelation lag, τ, and
represents the likelihood that a pitch is present with a frequency of
1/τ.

Brown [12] defines a Narrowed Autocorrelation (NAC) func-
tion which is computed from the pitch function by

In the absence of our nonlinear enhancement stage, the NAC
function would be equivalent to a modified version of the auto-
correlation given by

where R(f,t) is the instantaneous firing rate of auditory nerves with
a center frequency of f at time t.  For example, a pitch of 100 Hz will
show a peak in the integrated correlogram at 10 ms and at the
subharmonics of 20 ms, 30 ms and so on.   The NAC allows these
subharmonics to be considered when the pitch is determined.

We use  a technique described by Nishihara [13] to judge the
location of the pitch peaks.  In general the peaks in the pitch
function are symmetric and an accurate estimate of their center is
made by fitting a polynomial to the points near the peak.  Using
multiple points to determine the location of the peaks allows the
pitch period to be determined with a resolution finer than the
sampling interval (in low noise situations), and a more robust
estimate to be made when noise is present.
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Figure 4.  This convolutional operator is used to empha-
size the vertical structure in the correlogram.

Figure 3.  The correlogram and perceived pitch for a male
speaker saying the vowel /u/.

Figure 5.  The correlogram and perceived pitch of an
inharmonic tone is shown here.
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5. Results
The results of three experiments are described here.  Two of the

sound examples are from a wonderful compact disc of auditory
examples produced by the Acoustical Society of America [14].

A pitch can be perceived for sounds that do not have any energy
at the fundamental.  This is called residue pitch and there are many
excellent examples of this phenomena on the ASA CD.  Demon-
stration 22 includes an example of residue pitch with low fre-
quency noise (approximately –20 dB signal-to-noise ratio or
SNR.)  The pitch computed from one frame of the correlogram of
this sound is shown in Figure 5.  While in this particular case the
lowpass noise can be easily removed with a filter, the perceptual
pitch detector described here does equally well with the opposite
case, a low frequency pitch with highpass noise.

The example above can be explained by the periodicities of the
filtered waveforms, but the same can not be said of inharmonic
sounds.  Consider a three tone complex produced by AM modulat-
ing a 2kHz tone at 200 Hz.  This will be perceived with a pitch of
200Hz since the three tones represent the 9th, 10th and 11th
harmonics of a 200 Hz fundamental.  Now, if the carrier frequency
is moved up 40Hz to 2040 Hz the tones no longer form a harmonic
complex.  To a first approximation the sound is perceived to have
a pitch of 204 Hz, as if the sound is still harmonic and is approxi-
mately the 9th, 10th and 11th harmonics of a 204 Hz fundamental.
This result is shown in Figure 6.
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P(τ) = ∑
i

C(τ,fi) df.

PN(τ) = ∑
i

N
 (N-i) P(iτ).

CN(f,τ)=∫[R(f,t )+R(f,t+τ)+…+R(f,t+N τ)]2dt



As the carrier frequency of this example is raised, people will
hear the pitch fall slowly and then jump to a higher pitch.  The slow
fall of pitch as the carrier frequency is raised is known as the second
effect [15].  While the correlogram shows this effect at the low end
of the almost-vertical line, we do not know how to work this result
into a robust algorithm.

Finally, Figure 7 shows the pitch perceived by our algorithm
due to the Shepard tones.  Demonstration 27 of the ASA CD
contains a continuous example of the Shepard tones (done by Jean-
Claude Risset) that is always decreasing in pitch.  This pitch of this
sound is ambiguous, and typically listeners follow one pitch for a
while until it becomes unreasonably low and then a new pitch is
chosen.  Our algorithm also shows an ambiguity by jumping
between possible choices.
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Figure 5.  The perceived pitch of example #22 from the ASA CD.   In this example, the Westminster chimes melody is played by
alternating a low tone (fundamental only) and a residue tone at the same pitch.   During the middle 12 seconds of this example low
pass noise is added to give an approximate SNR or -20 dB.  Our pitch detector does not make a decision about whether valid pitch is
present so during the times between residue pitches (indicated by solid black horizontal lines) the pitch is determined by the noise.

Figure 7.  The pitch of a continuous Shepard tone is shown
here.  Note, that the pitch is ambiguous and this pitch
detector can show different pitches in adjacent frames.
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