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� Represent an image (a rectangular array of pixels) using as few bits as
possible, while still allowing su�ciently faithful reproduction from those
bits
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� Represent an image (a rectangular array of pixels) using as few bits as
possible, while still allowing su�ciently faithful reproduction from those
bits

� Trade-o� bit rate and quality between two end-points:
{ Perfect �delity (lossless): need� log2 P(image) bits, whereP is a

probability model that tries to predict the image
{ Zero rate: reproduce the \average image"



Lena / Lenna: the world's most-often compressed image?
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Original: 790KB Compressed: 7.2KB



Measuring Fidelity
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� Pixel-level:

PSNR = 10 log10
2552

� 2
err

� Many papers complain about PSNR, then go on to use it

� Meaningful when relatively high and when comparing similar coding
schemes



Principles of lossy image compression
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� Eliminate redundancy

� Exploit human visual system and available prior knowledge

� Omit irrelevant information, or don't spend many bits on it

� Fundamental trade-o� is between bit rate and quality



Compression-related Theoretical Quantities
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� Lossless: Entropy ofP(X ):

H (X ) = �
X

X

P(X ) log2 P(X )

� Minimum number of bits required, on average, to representX exactly.
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� Lossless: Entropy ofP(X ):

H (X ) = �
X

X

P(X ) log2 P(X )

� Minimum number of bits required, on average, to representX exactly.

� Lossy: Rate-distortion function ofP(X ) using distortion measureD :

R(D � ) = min
P (Y jX ):D<D �

X

X;Y

P(X; Y ) log2
P(Y jX )

P(Y )

� Minimum number of bits required, on average, to representX
approximately.
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� Semantic compression: \It's the Lena image."
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� Di�erential predictive coding
{ Predict current pixel from previously decoded ones
{ Encode di�erence between actual and predicted value
{ Goal: minimize energy / information in residual (di�erence signal)
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� Semantic compression: \It's the Lena image."

� Di�erential predictive coding
{ Predict current pixel from previously decoded ones
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� Vector quantization
{ Divide image into blocks
{ Treat each block as a vector
{ Replace each block by its nearest entry in a codebook
{ Goal: minimize average squared error and rate needed for codebook

indices
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� Semantic compression: \It's the Lena image."

� Di�erential predictive coding
{ Predict current pixel from previously decoded ones
{ Encode di�erence between actual and predicted value
{ Goal: minimize energy / information in residual (di�erence signal)

� Vector quantization
{ Divide image into blocks
{ Treat each block as a vector
{ Replace each block by its nearest entry in a codebook
{ Goal: minimize average squared error and rate needed for codebook

indices

� Transform/Subband/Wavelet Coding
{ Analyze local image regions into frequency bands
{ Allocate available code bits to represent most active regions/bands
{ Goal: compress by using bits only \where needed"



Transform/Subband/Wavelet Coding
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� Includes JPEG, JPEG2000 (will not go into details of standards)

� By far the most important compression technique (family of techniques)
for natural scenes

� Goes back at least to Huang and Schultheiss, 1963

� Transform coding considered �rst, then generalizations



Transform Coding Block Diagram
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� Input blocks are groups of image pixels, typically8 � 8 non-overlapping
blocks { can create discontinuities
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� Reversible, energy-compacting,linear transformation { concentrates
\information" (energy) into as few components as possible
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� Bit allocation decides where the important information is, and lets the
quantizers know
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� Quantization constitutes the lossy step and determines the quality of
decoded image. Question: why use scalar (independent) quantizers?
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� Encoding is closely tied to quantization and bit allocation



Forward and Reverse Transform
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Transform
Forward Inverse

Transform

x yq

A A-1

Transform is linear and therefore has a matrix representationA:

� = Ax

Transform is invertible; typically orthogonal:

y = A � 1� = AT �



Forward and Reverse Transform
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Transform
Forward Inverse

Transform

x yq

A A-1

Transform \compacts" energy / information present inx into as few
components of� as possible



Forward and Reverse Transform
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Transform
Forward

x
Inverse

Transform

yq
S

h

A A
-1

Inverse transform preserves error norm:

jy � xj = jA � 1(Ax + � ) � xj = jAT � j = j� j

Here, � models quantization error

Allows us to conclude that best overall compression (distortion, rate) will
correspond to best compression (distortion, rate) in transform domain



Recipe for \optimal" energy compaction
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� Choose a block size

� Estimate the covariance matrix using example data

� Find eigenvectors and normalize

� Form transformation matrix using eigenvectors as the columns

� Covariance matrix of transformed vector will be diagonal and the product
of its elements will be minimized relative to the sum (trace).

� Karhunen-Loeve transform, Hotelling transform, principal components
analysis

� So why not always just use the KLT?



Choice of transform
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� KLT is data-dependent, relatively hard to compute; decoder needs to be
told what it is

� Discrete cosine transform (DCT) provides good energy compaction for
positively correlated sources; used in JPEG:

� (k) = � (k)
N � 1X

n=0

x(n) cos[
� (2n + 1) k

2N
]; 0 � k � N � 1

y(n) =
N � 1X

k=0

� (k)� (k) cos[
� (2n + 1) k

2N
]; 0 � n � N � 1

where

� (k) =

8
<

:

q
1
N if k = 0;

q
2
N otherwise.



Discrete Cosine Transform
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� Orthogonal and energy-compacting implies decorrelating

� Applied to image blocks separably, as two one-dimensional transforms (one
vertical and the other horizontal)

� Example: one-dimensional forward DCT matrix,N = 4 :
2

6
6
4

0:5 0:5 0:5 0:5
0:65 0:27 � 0:27 � 0:65
0:5 � 0:5 � 0:5 0:5
0:27 � 0:65 0:65 � 0:27

3

7
7
5



One-Dimensional DCT Example, N = 8
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Forward transformation matrix:
2

6
6
6
6
6
6
6
6
6
6
4

0:35 0:35 0:35 0:35 0:35 0:35 0:35 0:35
0:49 0:42 0:28 0:098 � 0:098 � 0:28 � 0:42 � 0:49
0:46 0:19 � 0:19 � 0:46 � 0:46 � 0:19 0:19 0:46
0:42 � 0:098 � 0:49 � 0:28 0:28 0:49 0:098 � 0:42
0:35 � 0:35 � 0:35 0:35 0:35 � 0:35 � 0:35 0:35
0:28 � 0:49 0:098 0:42 � 0:42 � 0:098 0:49 � 0:28
0:19 � 0:46 0:46 � 0:19 � 0:19 0:46 � 0:46 0:19
0:098 � 0:28 0:42 � 0:49 0:49 � 0:42 0:28 � 0:098

3

7
7
7
7
7
7
7
7
7
7
5



Choice of Block Size N
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� Consider choosing block size to maximize energy compaction

� Experiment: For several block sizesN , compute DCT of thecameraman
image. Retain the largestK coe�cients, set the remaining ones to zero,
and inverse-transform. Plot reconstruction error againstK . Results on the
next slide.



Choice of Block Size N
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Mean-squared reconstruction error versus fraction of coe�cients kept for 2-D
DCT of cameramanimage,N = 4 ; 8; 16; 64; 256
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Reconstructed Images at 1% Level
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N = 4
Using largest-magnitude 1% of DCT coe�cients



Reconstructed Images at 1% Level

Ashok C. Popat Lossy Image Compression 3/7/07 20

N = 8
Using largest-magnitude 1% of DCT coe�cients



Reconstructed Images at 1% Level
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N = 16
Using largest-magnitude 1% of DCT coe�cients



Reconstructed Images at 1% Level
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N = 64
Using largest-magnitude 1% of DCT coe�cients



Reconstructed Images at 1% Level
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N = 256
Using largest-magnitude 1% of DCT coe�cients



Choice of Block Size N
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� Considering energy compaction alone, these results seem to indicate that
N should be made as large as possible
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� Consider activity maps: log of the average energy in the transformed
blocks
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� Considering energy compaction alone, these results seem to indicate that
N should be made as large as possible

� Consider activity maps: log of the average energy in the transformed
blocks

N = 4
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� Considering energy compaction alone, these results seem to indicate that
N should be made as large as possible

� Consider activity maps: log of the average energy in the transformed
blocks

N = 4 N = 16
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� Considering energy compaction alone, these results seem to indicate that
N should be made as large as possible

� Consider activity maps: log of the average energy in the transformed
blocks

N = 4 N = 16 N = 256
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� Considering energy compaction alone, these results seem to indicate that
N should be made as large as possible

� Consider activity maps: log of the average energy in the transformed
blocks

N = 4 N = 16 N = 256

� How does the decoder know where to place the received non-zero
coe�cients? What about adaptation to non-stationarity?



Choice of Block Size N
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� ChoosingN = 8 achieves a good compromise among energy compaction,
amount of side information, and adaptivity



Quantization and Bit Allocation
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Scalar Quantization
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-1

Input Output



Scalar Quantization
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� A scalar quantizer maps a continuous input into a discrete set of
representative values

� Fixed-rate: constraint on number of output levels

� Variable-rate: constraint on output entropy



Scalar Quantization
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� Let � i be the input toQi , � 2
� i

be the input variance,Ri be the bit rate
allocated to� i , and � 2

qi
be the quantization error variance. Then

� 2
qi

� �� 2
� i

2� 2R i

where� depends on the shape of the input distribution and the type of
quantizer.

� The total quantization error variance, and hence the total transform
coding error variance, is

� 2
q = �

N � 1X

i =0

� 2
� i

2� 2R i



Scalar Quantization
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� From last slide, the total transform coding error variance is

� 2
q = �

N � 1X

i =0

� 2
� i

2� 2R i

� Lagrangian:

�
N � 1X

i =0

� 2
� i

2� 2R i � � [(
N � 1X

i =0

Ri ) � R]

so that, setting partial derivatives w.r.t.Rj to zero,

� 2 ln 2�� 2
� j

2� 2R j = � so that Rj / log � � j

� Must ensure thatRi � 0 when� � i is small



Entropy-Constrained Quantization
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� Uniform entropy-constrained quantization is nearly optimal

� For a uniform quantizer with small step size� i , quantization error
variance is close to� 2

i =12:

� 2
i =12 = �� 2

� i
2� 2R i

so that

Ri =
1
2

log
12�� 2

� i

� 2
i

which implements the log-variance rule when� i is held �xed.

� Bit allocation rule for entropy-constrained quantization: use the same step
size for all components of�

� JPEG does essentially this, but allowing for some perceptually-motivated
adjustments on the basis of spatial frequency and whether the component
is luminance or chrominance



Back to the Transform: Separable Processing
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� First transform rows of image

� Next, transform columns

� Use of separable �lters and transforms is common in image processing



One-dimensional block transformation
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Multi-rate signal processing interpretation

Ashok C. Popat Lossy Image Compression 3/7/07 31

� Each transform coe�cient is a weighted sum of the block's pixels

� Compute convolution only at everyK th position (shown for two
coe�cient positions)



Critically sampled multi-rate �lter bank
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� When convolution kernels have length not greater thanK , corresponds to
a block transform.



Motivation in terms of power spectral densities
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� Uncorrelated ! at power spectral density

� Highly correlated ! highly non-at PSD

� Suggests splitting up the spectrum and allocating more bits to the
higher-energy segments
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� Subsampling each sub-band prevents an increase in the amount of datato
be encoded



What about Aliasing?
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� If ideal \brickwall" band-pass �lters are used, Nyquist's theorem states
that no information is lost

� If non-ideal �lters are used, then aliasing in one band can cancel out that
in another (quadrature-mirror �lters)

� Beyond aliasing-cancellation, perfect reconstruction is possible

� Existence proof: invertible block transform



Critically Sampled Filter Bank
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� When �lter length = number of subbands =K , implements a block
transform

� DCT can be realized using a critically sampled �lter bank

� DCT can be understood and evaluated in terms of its equivalent �ltering
characteristics



8-Point DCT as a Filter Bank
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N = 8 Magnitude frequency response (dB)
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8-Point DCT as a Filter Bank
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Impulse response ofH0 Impulse response ofH1

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

-20 -15 -10 -5  0  5  10  15  20

-0.4

-0.2

 0

 0.2

 0.4

-20 -15 -10 -5  0  5  10  15  20



Two Opportunities for Improving Block-Transform Coding
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� Because the blocks are non-overlapping, the discontinuitiesgive rise to
blocking artifacts

� High-frequency components need small spatial support while
low-frequency components should get large spatial support. But transform
coding gives all frequencies the same spatial support (block size).



Can the convolution kernel extend beyond the block boundari es?
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� When �lter length > number of subbands =K , implements a \lapped
orthogonal transform" { blocks overlap



Should we try for ideal \brickwall" �lters?
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� Spatial versus spectral localization

� Ringing is perceptually objectionable

� Should jointly localize in space and spatial frequency



E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 8 Magnitude frequency response (dB)
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E�ect of Increasing Filter Length while Optimizing Joint
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N = 16 Magnitude frequency response (dB)
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E�ect of Increasing Filter Length while Optimizing Joint
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N = 24 Magnitude frequency response (dB)
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E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 32 Magnitude frequency response (dB)
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E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 40 Magnitude frequency response (dB)
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E�ect of Increasing Filter Length while Optimizing Joint
Localization

Ashok C. Popat Lossy Image Compression 3/7/07 42

N = 8 Impulse response ofH0
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E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 16 Impulse response ofH0
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E�ect of Increasing Filter Length while Optimizing Joint
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N = 24 Impulse response ofH0
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E�ect of Increasing Filter Length while Optimizing Joint
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E�ect of Increasing Filter Length while Optimizing Joint
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E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 8 Impulse response ofH1
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E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 16 Impulse response ofH1
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E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 24 Impulse response ofH1
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E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 32 Impulse response ofH1
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E�ect of Increasing Filter Length while Optimizing Joint
Localization
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N = 40 Impulse response ofH1
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Two Opportunities for Improving Block-Transform Coding
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� Because the blocks are non-overlapping, the discontinuitiesgive rise to
blocking artifacts

� High-frequency components need small spatial support while
low-frequency components should get large spatial support. But transform
coding gives all frequencies the same spatial support (block size).



Tree-Structured Filter Banks
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� Recursively subdivide lowest-frequency subband

� Allows high-frequency bands to have short spatial support (e.g., to analyze
edges) while allowing low-frequency bands to have long spatial support
(e.g., to compress low-activity/low-contrast regions e�ectively)

� Sometimes called quadrature-mirror �lters, discrete wavelet transform

Analysis
Analysis

Analysis

Synthesis
Synthesis

Synthesis
Low

Low
Low

High

High

High



Separable Application to Images
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Reections on Transform Coding
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Transform
Forward Inverse

Transform

x yq

A A-1

Does the transform make the input more compressible?
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Transform
Forward Inverse

Transform

x yq

A A-1

Does the transform make the input more compressible?

Given that the transform is invertible, how does the rate-distortion function of
� compare with that ofx?

In light of this, what is the role of the transform?
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Transform
Forward Inverse

Transform

x yq

A A-1

Transform does not compress;it simpli�es subsequent compression

Transform puts signal's energy in predictable places

Transform enables simple scalar quantization to be e�ective on the
transformed data

What if I'm willing to do something more complex?



Vector quantization
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� Treat an (e.g.) 8 � 8 block as a point in 64-dimensional space

� Build a \codebook" of N reproduction vectors

� Encode each input point usingdlog2 N e bits (�xed-rate), or

� Use variable-rate coding



Fixed-rate codebook design (Lloyd, k-means)
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1. Initialize codebook

2. Assign example points to nearest codebook entry

3. Re-compute codebook entries as centroids of assigned points

4. Return to Step 2



Vector quantization
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� Does not �gure prominently in standards

� May be used in proprietary schemes (interest in hierarchicalVQ
re-invigorated around 1997 for video)

� Related to cluster analysis and classi�cation / regression trees

� Unlike transform coding, can approach the RDF



Why not Vector Quantize Transformed Image?
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� Why is scalar quantization e�ective on transform coe�cients?

� Components of the Vector Quantization Advantage: dependence (most),
PDF shape (some), space-�lling (some)

� Transform coe�cients are uncorrelated, both spatially and across
frequency band

� PDF shape gain small over entropy-constrained scalar quantization

� Is there any role for Vector Quantization in transform/subband/wavelet
coding?



Exploiting Nonlinear Statistical Dependence
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� Orthogonal linear transform (rotation) will not make the regularity
amenable to scalar quantization

� Vector quantization would be quite e�ective here



Exploiting Nonlinear Statistical Dependence

Ashok C. Popat Lossy Image Compression 3/7/07 54

Three-by-three subband decomposition:

� Subbands are uncorrelated, but obviously dependent

� Suggests that there is potential bene�t in jointly coding transform
coe�cients



Embedded Zerotrees Wavelet Coding
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� Described by Jerry Shapiro, \Embedded image coding using zerotrees of
wavelet coe�cients." IEEE Transactions on Signal Processing,
41(12):3445{3462, Dec. 1993.

� Several neat ideas in one paper

� Most important contribution: e�ective means of exploiting nonlinear
statistical dependence among wavelet coe�cients

� Exploits following empirical �nding: inactive spatial regionsof non-DC
low-resolution subbands are likely to remain inactive in higher-resolution
counterparts



Predicting Inactivity across Subbands
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� Lossy compression trades o� rate and �delity

� Transform coding re-arranges input so that statistical regularities are
easier to exploit

� Filter-bank interpretation suggests generalization to overlapping regions of
support, mitigating blocking artifacts and improving energy compaction
(quadrature-mirror �lters, lapped orthogonal transform, mid-1980s)

� Recursively subdividing low-frequency subband leads to discrete wavelet
transform, providing better energy compaction and allowing e�ective
extent of spatial support to be tailored to the frequency band

� Some performance gain by taking advantage of (non-linear) statistical
dependence among sub-bands (all bands \ring" on edges; basis for
EZWT)

� Lossy compression: �rst choose the message you want to send (lossy),
then entropy code it (lossless).
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